//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=// // // This file provides a simple class to calculate the dominator set of a method. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/SimplifyCFG.h" // To get cfg::UnifyAllExitNodes #include "llvm/CFG.h" #include "llvm/Support/STLExtras.h" #include //===----------------------------------------------------------------------===// // Helper Template //===----------------------------------------------------------------------===// // set_intersect - Identical to set_intersection, except that it works on // set<>'s and is nicer to use. Functionally, this iterates through S1, // removing elements that are not contained in S2. // template void set_intersect(set &S1, const set &S2) { for (typename set::iterator I = S1.begin(); I != S1.end();) { const Ty &E = *I; ++I; if (!S2.count(E)) S1.erase(E); // Erase element if not in S2 } } //===----------------------------------------------------------------------===// // DominatorBase Implementation //===----------------------------------------------------------------------===// bool cfg::DominatorBase::isPostDominator() const { // Root can be null if there is no exit node from the CFG and is postdom set return Root == 0 || Root != Root->getParent()->front(); } //===----------------------------------------------------------------------===// // DominatorSet Implementation //===----------------------------------------------------------------------===// // DominatorSet ctor - Build either the dominator set or the post-dominator // set for a method... // cfg::DominatorSet::DominatorSet(const Method *M) : DominatorBase(M->front()) { calcForwardDominatorSet(M); } // calcForwardDominatorSet - This method calculates the forward dominator sets // for the specified method. // void cfg::DominatorSet::calcForwardDominatorSet(const Method *M) { assert(Root && M && "Can't build dominator set of null method!"); bool Changed; do { Changed = false; DomSetType WorkingSet; df_const_iterator It = df_begin(M), End = df_end(M); for ( ; It != End; ++It) { const BasicBlock *BB = *It; pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a predecessor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are // traversing the graph in DFO and have handled start nodes specially. // while (Doms[*PI].size() == 0) ++PI; WorkingSet = Doms[*PI]; for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets DomSetType &PredSet = Doms[*PI]; if (PredSet.size()) set_intersect(WorkingSet, PredSet); } } WorkingSet.insert(BB); // A block always dominates itself DomSetType &BBSet = Doms[BB]; if (BBSet != WorkingSet) { BBSet.swap(WorkingSet); // Constant time operation! Changed = true; // The sets changed. } WorkingSet.clear(); // Clear out the set for next iteration } } while (Changed); } // Postdominator set constructor. This ctor converts the specified method to // only have a single exit node (return stmt), then calculates the post // dominance sets for the method. // cfg::DominatorSet::DominatorSet(Method *M, bool PostDomSet) : DominatorBase(M->front()) { if (!PostDomSet) { calcForwardDominatorSet(M); return; } Root = cfg::UnifyAllExitNodes(M); if (Root == 0) { // No exit node for the method? Postdomsets are all empty for (Method::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) Doms[*MI] = DomSetType(); return; } bool Changed; do { Changed = false; set Visited; DomSetType WorkingSet; idf_const_iterator It = idf_begin(Root), End = idf_end(Root); for ( ; It != End; ++It) { const BasicBlock *BB = *It; succ_const_iterator PI = succ_begin(BB), PEnd = succ_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a successor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are // traversing the graph in DFO and have handled start nodes specially. // while (Doms[*PI].size() == 0) ++PI; WorkingSet = Doms[*PI]; for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets DomSetType &PredSet = Doms[*PI]; if (PredSet.size()) set_intersect(WorkingSet, PredSet); } } WorkingSet.insert(BB); // A block always dominates itself DomSetType &BBSet = Doms[BB]; if (BBSet != WorkingSet) { BBSet.swap(WorkingSet); // Constant time operation! Changed = true; // The sets changed. } WorkingSet.clear(); // Clear out the set for next iteration } } while (Changed); } //===----------------------------------------------------------------------===// // ImmediateDominators Implementation //===----------------------------------------------------------------------===// // calcIDoms - Calculate the immediate dominator mapping, given a set of // dominators for every basic block. void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) { // Loop over all of the nodes that have dominators... figuring out the IDOM // for each node... // for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); DI != DEnd; ++DI) { const BasicBlock *BB = DI->first; const DominatorSet::DomSetType &Dominators = DI->second; unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping over // nodes in the dominator chain, looking for a node whose dominator set is // equal to the current nodes, except that the current node does not exist // in it. This means that it is one level higher in the dom chain than the // current node, and it is our idom! // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number of elements // in the dominator set indicates what level the node is at in the chain. // We want the node immediately above us, so it will have an identical // dominator set, except that BB will not dominate it... therefore it's // dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { IDoms[BB] = *I; break; } } } } //===----------------------------------------------------------------------===// // DominatorTree Implementation //===----------------------------------------------------------------------===// // DominatorTree dtor - Free all of the tree node memory. // cfg::DominatorTree::~DominatorTree() { for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) delete I->second; } cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms) : DominatorBase(IDoms.getRoot()) { const Method *M = Root->getParent(); Nodes[Root] = new Node(Root, 0); // Add a node for the root... // Iterate over all nodes in depth first order... for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) { const BasicBlock *BB = *I, *IDom = IDoms[*I]; if (IDom != 0) { // Ignore the root node and other nasty nodes // We know that the immediate dominator should already have a node, // because we are traversing the CFG in depth first order! // assert(Nodes[IDom] && "No node for IDOM?"); Node *IDomNode = Nodes[IDom]; // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); } } } void cfg::DominatorTree::calculate(const DominatorSet &DS) { Nodes[Root] = new Node(Root, 0); // Add a node for the root... if (!isPostDominator()) { // Iterate over all nodes in depth first order... for (df_const_iterator I = df_begin(Root), E = df_end(Root); I != E; ++I) { const BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping over // nodes in the dominator chain, looking for a node whose dominator set is // equal to the current nodes, except that the current node does not exist // in it. This means that it is one level higher in the dom chain than the // current node, and it is our idom! We know that we have already added // a DominatorTree node for our idom, because the idom must be a // predecessor in the depth first order that we are iterating through the // method. // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number of elements // in the dominator set indicates what level the node is at in the chain. // We want the node immediately above us, so it will have an identical // dominator set, except that BB will not dominate it... therefore it's // dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { // We know that the immediate dominator should already have a node, // because we are traversing the CFG in depth first order! // Node *IDomNode = Nodes[*I]; assert(IDomNode && "No node for IDOM?"); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); break; } } } } else if (Root) { // Iterate over all nodes in depth first order... for (idf_const_iterator I = idf_begin(Root), E = idf_end(Root); I != E; ++I) { const BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping over // nodes in the dominator chain, looking for a node whose dominator set is // equal to the current nodes, except that the current node does not exist // in it. This means that it is one level higher in the dom chain than the // current node, and it is our idom! We know that we have already added // a DominatorTree node for our idom, because the idom must be a // predecessor in the depth first order that we are iterating through the // method. // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number of elements // in the dominator set indicates what level the node is at in the chain. // We want the node immediately above us, so it will have an identical // dominator set, except that BB will not dominate it... therefore it's // dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { // We know that the immediate dominator should already have a node, // because we are traversing the CFG in depth first order! // Node *IDomNode = Nodes[*I]; assert(IDomNode && "No node for IDOM?"); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); break; } } } } } //===----------------------------------------------------------------------===// // DominanceFrontier Implementation //===----------------------------------------------------------------------===// const cfg::DominanceFrontier::DomSetType & cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] const BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this successor? if (DT[*SI]->getIDom() != Node) S.insert(*SI); } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; const DomSetType &ChildDF = calcDomFrontier(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { if (!Node->dominates(DT[*CDFI])) S.insert(*CDFI); } } return S; } const cfg::DominanceFrontier::DomSetType & cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] const BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... if (!Root) return S; for (pred_const_iterator SI = pred_begin(BB), SE = pred_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this predeccessor? if (DT[*SI]->getIDom() != Node) S.insert(*SI); } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { if (!Node->dominates(DT[*CDFI])) S.insert(*CDFI); } } return S; }