//===-- SparcV9CodeEmitter.cpp - --------===// // // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetData.h" #include "Support/Statistic.h" #include "Support/hash_set" #include "SparcInternals.h" #include "SparcV9CodeEmitter.h" bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM, MachineCodeEmitter &MCE) { MachineCodeEmitter *M = &MCE; DEBUG(MachineCodeEmitter::createFilePrinterEmitter(MCE)); PM.add(new SparcV9CodeEmitter(*this, *M)); PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed return false; } namespace { class JITResolver { SparcV9CodeEmitter &SparcV9; MachineCodeEmitter &MCE; // LazyCodeGenMap - Keep track of call sites for functions that are to be // lazily resolved. std::map LazyCodeGenMap; // LazyResolverMap - Keep track of the lazy resolver created for a // particular function so that we can reuse them if necessary. std::map LazyResolverMap; public: JITResolver(SparcV9CodeEmitter &V9, MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {} uint64_t getLazyResolver(Function *F); uint64_t addFunctionReference(uint64_t Address, Function *F); // Utility functions for accessing data from static callback uint64_t getCurrentPCValue() { return MCE.getCurrentPCValue(); } unsigned getBinaryCodeForInstr(MachineInstr &MI) { return SparcV9.getBinaryCodeForInstr(MI); } inline uint64_t insertFarJumpAtAddr(int64_t Value, uint64_t Addr); private: uint64_t emitStubForFunction(Function *F); static void CompilationCallback(); uint64_t resolveFunctionReference(uint64_t RetAddr); }; JITResolver *TheJITResolver; } /// addFunctionReference - This method is called when we need to emit the /// address of a function that has not yet been emitted, so we don't know the /// address. Instead, we emit a call to the CompilationCallback method, and /// keep track of where we are. /// uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) { LazyCodeGenMap[Address] = F; return (intptr_t)&JITResolver::CompilationCallback; } uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) { std::map::iterator I = LazyCodeGenMap.find(RetAddr); assert(I != LazyCodeGenMap.end() && "Not in map!"); Function *F = I->second; LazyCodeGenMap.erase(I); return MCE.forceCompilationOf(F); } uint64_t JITResolver::getLazyResolver(Function *F) { std::map::iterator I = LazyResolverMap.lower_bound(F); if (I != LazyResolverMap.end() && I->first == F) return I->second; //std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n"; uint64_t Stub = emitStubForFunction(F); LazyResolverMap.insert(I, std::make_pair(F, Stub)); return Stub; } uint64_t JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) { static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2, i7 = SparcIntRegClass::i7, o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0; // // Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2 // // stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp MachineInstr *STX = BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119); *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX); delete STX; Addr += 4; // stx %i2, [%sp + 2127] ;; save %i2 to the stack STX = BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127); *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX); delete STX; Addr += 4; // // Get address to branch into %i2, using %i1 as a temporary // // sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1 MachineInstr *SH = BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1); *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH); delete SH; Addr += 4; // or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1 MachineInstr *OR = BuildMI(V9::ORi, 3) .addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1); *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR); delete OR; Addr += 4; // sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word MachineInstr *SL = BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1); *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SL); delete SL; Addr += 4; // sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg SH = BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2); *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH); delete SH; Addr += 4; // or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2 OR = BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2); *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR); delete OR; Addr += 4; // or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2 OR = BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2); *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR); delete OR; Addr += 4; // ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72 MachineInstr *LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1); *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX); delete LDX; Addr += 4; // jmpl %i2, %g0, %g0 ;; indirect branch on %i2 MachineInstr *J = BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(g0); *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*J); delete J; Addr += 4; // ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80 LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2); *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX); delete LDX; Addr += 4; return Addr; } void JITResolver::CompilationCallback() { uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0); int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom); DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n"); // Rewrite the call target... so that we don't fault every time we execute // the call. #if 0 int64_t RealCallTarget = (int64_t) ((NewVal - TheJITResolver->getCurrentPCValue()) >> 4); if (RealCallTarget >= (1<<22) || RealCallTarget <= -(1<<22)) { std::cerr << "Address out of bounds for 22bit BA: " << RealCallTarget<<"\n"; abort(); } #endif //uint64_t CurrPC = TheJITResolver->getCurrentPCValue(); // we will insert 9 instructions before we do the actual jump //int64_t NewTarget = (NewVal - 9*4 - InstAddr) >> 2; static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2, i7 = SparcIntRegClass::i7, o6 = SparcIntRegClass::o6, o7 = SparcIntRegClass::o7, g0 = SparcIntRegClass::g0; // Subtract 4 to overwrite the 'save' that's there now uint64_t InstAddr = CameFrom-4; InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr); // CODE SHOULD NEVER GO PAST THIS LOAD!! The real function should return to // the original caller, not here!! // FIXME: add call 0 to make sure?!? // =============== THE REAL STUB ENDS HERE ========================= // What follows below is one-time restore code, because this callback may be // changing registers in unpredictible ways. However, since it is executed // only once per function (after the function is resolved, the callback is no // longer in the path), this has to be done only once. // // Thus, it is after the regular stub code. The call back returns to THIS // point, but every other call to the target function will execute the code // above. Hence, this code is one-time use. uint64_t OneTimeRestore = InstAddr; // restore %g0, 0, %g0 //MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0) // .addMReg(g0, MOTy::Def); //*((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*R); //delete R; // FIXME: BuildMI() above crashes. Encode the instruction directly. // restore %g0, 0, %g0 *((unsigned*)(intptr_t)InstAddr) = 0x81e82000U; InstAddr += 4; InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr); // FIXME: if the target function is close enough to fit into the 19bit disp of // BA, we should use this version, as its much cheaper to generate. /* MachineInstr *MI = BuildMI(V9::BA, 1).addSImm(RealCallTarget); *((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*MI); delete MI; InstAddr += 4; // Add another NOP MachineInstr *Nop = BuildMI(V9::NOP, 0); *((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*Nop); delete Nop; InstAddr += 4; MachineInstr *BA = BuildMI(V9::BA, 1).addSImm(RealCallTarget-2); *((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*BA); delete BA; */ // Change the return address to reexecute the call instruction... // The return address is really %o7, but will disappear after this function // returns, and the register windows are rotated away. #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) __asm__ __volatile__ ("or %%g0, %0, %%i7" : : "r" (OneTimeRestore-8)); #endif } /// emitStubForFunction - This method is used by the JIT when it needs to emit /// the address of a function for a function whose code has not yet been /// generated. In order to do this, it generates a stub which jumps to the lazy /// function compiler, which will eventually get fixed to call the function /// directly. /// uint64_t JITResolver::emitStubForFunction(Function *F) { MCE.startFunctionStub(*F, 6); DEBUG(std::cerr << "Emitting stub at addr: 0x" << std::hex << MCE.getCurrentPCValue() << "\n"); unsigned o6 = SparcIntRegClass::o6; // save %sp, -192, %sp MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6); SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV)); delete SV; int64_t CurrPC = MCE.getCurrentPCValue(); int64_t Addr = (int64_t)addFunctionReference(CurrPC, F); int64_t CallTarget = (Addr-CurrPC) >> 2; if (CallTarget >= (1 << 30) || CallTarget <= -(1 << 30)) { std::cerr << "Call target beyond 30 bit limit of CALL: " << CallTarget << "\n"; abort(); } // call CallTarget ;; invoke the callback MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget); SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call)); delete Call; // nop ;; call delay slot MachineInstr *Nop = BuildMI(V9::NOP, 0); SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop)); delete Nop; SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub return (intptr_t)MCE.finishFunctionStub(*F); } SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm, MachineCodeEmitter &M): TM(tm), MCE(M) { TheJITResolver = new JITResolver(*this, M); } SparcV9CodeEmitter::~SparcV9CodeEmitter() { delete TheJITResolver; } void SparcV9CodeEmitter::emitWord(unsigned Val) { // Output the constant in big endian byte order... unsigned byteVal; for (int i = 3; i >= 0; --i) { byteVal = Val >> 8*i; MCE.emitByte(byteVal & 255); } } bool SparcV9CodeEmitter::isFPInstr(MachineInstr &MI) { for (unsigned i = 0, e = MI.getNumOperands(); i < e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (MO.isPhysicalRegister()) { unsigned fakeReg = MO.getReg(), realReg, regClass, regType; regType = TM.getRegInfo().getRegType(fakeReg); // At least map fakeReg into its class fakeReg = TM.getRegInfo().getClassRegNum(fakeReg, regClass); if (regClass == UltraSparcRegInfo::FPSingleRegType || regClass == UltraSparcRegInfo::FPDoubleRegType) return true; } } return false; } unsigned SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg, unsigned regClass, MachineInstr &MI) { switch (regClass) { case UltraSparcRegInfo::IntRegType: { // Sparc manual, p31 static const unsigned IntRegMap[] = { // "o0", "o1", "o2", "o3", "o4", "o5", "o7", 8, 9, 10, 11, 12, 13, 15, // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", 16, 17, 18, 19, 20, 21, 22, 23, // "i0", "i1", "i2", "i3", "i4", "i5", 24, 25, 26, 27, 28, 29, // "i6", "i7", 30, 31, // "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", 0, 1, 2, 3, 4, 5, 6, 7, // "o6" 14 }; return IntRegMap[fakeReg]; break; } case UltraSparcRegInfo::FPSingleRegType: { return fakeReg; } case UltraSparcRegInfo::FPDoubleRegType: { return fakeReg; } case UltraSparcRegInfo::FloatCCRegType: { /* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */ return fakeReg; } case UltraSparcRegInfo::IntCCRegType: { static const unsigned FPInstrIntCCReg[] = { 6 /* xcc */, 4 /* icc */ }; static const unsigned IntInstrIntCCReg[] = { 2 /* xcc */, 0 /* icc */ }; if (isFPInstr(MI)) { assert(fakeReg < sizeof(FPInstrIntCCReg)/sizeof(FPInstrIntCCReg[0]) && "Int CC register out of bounds for FPInstr IntCCReg map"); return FPInstrIntCCReg[fakeReg]; } else { assert(fakeReg < sizeof(IntInstrIntCCReg)/sizeof(IntInstrIntCCReg[0]) && "Int CC register out of bounds for IntInstr IntCCReg map"); return IntInstrIntCCReg[fakeReg]; } } default: assert(0 && "Invalid unified register number in getRegType"); return fakeReg; } } int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI, MachineOperand &MO) { int64_t rv = 0; // Return value; defaults to 0 for unhandled cases // or things that get fixed up later by the JIT. if (MO.isVirtualRegister()) { DEBUG(std::cerr << "ERROR: virtual register found in machine code.\n"); abort(); } else if (MO.isPCRelativeDisp()) { DEBUG(std::cerr << "PCRelativeDisp: "); Value *V = MO.getVRegValue(); if (BasicBlock *BB = dyn_cast(V)) { DEBUG(std::cerr << "Saving reference to BB (VReg)\n"); unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); } else if (const Constant *C = dyn_cast(V)) { if (ConstantMap.find(C) != ConstantMap.end()) { rv = (int64_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]); DEBUG(std::cerr << "const: 0x" << std::hex << rv << "\n"); } else { DEBUG(std::cerr << "ERROR: constant not in map:" << MO << "\n"); abort(); } } else if (GlobalValue *GV = dyn_cast(V)) { // same as MO.isGlobalAddress() DEBUG(std::cerr << "GlobalValue: "); // external function calls, etc.? if (Function *F = dyn_cast(GV)) { DEBUG(std::cerr << "Function: "); if (F->isExternal()) { // Sparc backend broken: this MO should be `ExternalSymbol' rv = (int64_t)MCE.getGlobalValueAddress(F->getName()); } else { rv = (int64_t)MCE.getGlobalValueAddress(F); } if (rv == 0) { DEBUG(std::cerr << "not yet generated\n"); // Function has not yet been code generated! TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F); // Delayed resolution... rv = TheJITResolver->getLazyResolver(F); } else { DEBUG(std::cerr << "already generated: 0x" << std::hex << rv << "\n"); } } else { DEBUG(std::cerr << "not a function: " << *GV << "\n"); abort(); } // The real target of the call is Addr = PC + (rv * 4) // So undo that: give the instruction (Addr - PC) / 4 if (MI.getOpcode() == V9::CALL) { int64_t CurrPC = MCE.getCurrentPCValue(); DEBUG(std::cerr << "rv addr: 0x" << std::hex << rv << "\n" << "curr PC: 0x" << CurrPC << "\n"); rv = (rv - CurrPC) >> 2; if (rv >= (1<<29) || rv <= -(1<<29)) { std::cerr << "addr out of bounds for the 30-bit call: " << rv << "\n"; abort(); } DEBUG(std::cerr << "returning addr: 0x" << rv << "\n"); } } else { std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n"; abort(); } } else if (MO.isPhysicalRegister() || MO.getType() == MachineOperand::MO_CCRegister) { // This is necessary because the Sparc doesn't actually lay out registers // in the real fashion -- it skips those that it chooses not to allocate, // i.e. those that are the SP, etc. unsigned fakeReg = MO.getReg(), realReg, regClass, regType; regType = TM.getRegInfo().getRegType(fakeReg); // At least map fakeReg into its class fakeReg = TM.getRegInfo().getClassRegNum(fakeReg, regClass); // Find the real register number for use in an instruction /////realReg = getRealRegNum(fakeReg, regClass, MI); realReg = getRealRegNum(fakeReg, regType, MI); DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] = " << realReg << "\n"); rv = realReg; } else if (MO.isImmediate()) { rv = MO.getImmedValue(); DEBUG(std::cerr << "immed: " << rv << "\n"); } else if (MO.isGlobalAddress()) { DEBUG(std::cerr << "GlobalAddress: not PC-relative\n"); rv = (int64_t) (intptr_t)getGlobalAddress(cast(MO.getVRegValue()), MI, MO.isPCRelative()); } else if (MO.isMachineBasicBlock()) { // Duplicate code of the above case for VirtualRegister, BasicBlock... // It should really hit this case, but Sparc backend uses VRegs instead DEBUG(std::cerr << "Saving reference to MBB\n"); BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); } else if (MO.isExternalSymbol()) { // Sparc backend doesn't generate this (yet...) std::cerr << "ERROR: External symbol unhandled: " << MO << "\n"; abort(); } else if (MO.isFrameIndex()) { // Sparc backend doesn't generate this (yet...) int FrameIndex = MO.getFrameIndex(); std::cerr << "ERROR: Frame index unhandled.\n"; abort(); } else if (MO.isConstantPoolIndex()) { // Sparc backend doesn't generate this (yet...) std::cerr << "ERROR: Constant Pool index unhandled.\n"; abort(); } else { std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; abort(); } // Finally, deal with the various bitfield-extracting functions that // are used in SPARC assembly. (Some of these make no sense in combination // with some of the above; we'll trust that the instruction selector // will not produce nonsense, and not check for valid combinations here.) if (MO.opLoBits32()) { // %lo(val) == %lo() in Sparc ABI doc return rv & 0x03ff; } else if (MO.opHiBits32()) { // %lm(val) == %hi() in Sparc ABI doc return (rv >> 10) & 0x03fffff; } else if (MO.opLoBits64()) { // %hm(val) == %ulo() in Sparc ABI doc return (rv >> 32) & 0x03ff; } else if (MO.opHiBits64()) { // %hh(val) == %uhi() in Sparc ABI doc return rv >> 42; } else { // (unadorned) val return rv; } } unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) { Val >>= bit; return (Val & 1); } bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) { MCE.startFunction(MF); DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName() << ", address: " << "0x" << std::hex << (long)MCE.getCurrentPCValue() << "\n"); // The Sparc backend does not use MachineConstantPool; // instead, it has its own constant pool implementation. // We create a new MachineConstantPool here to be compatible with the emitter. MachineConstantPool MCP; const hash_set &pool = MF.getInfo()->getConstantPoolValues(); for (hash_set::const_iterator I = pool.begin(), E = pool.end(); I != E; ++I) { Constant *C = (Constant*)*I; unsigned idx = MCP.getConstantPoolIndex(C); DEBUG(std::cerr << "Mapping constant 0x" << (intptr_t)C << " to " << idx << "\n"); ConstantMap[C] = idx; } MCE.emitConstantPool(&MCP); for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) emitBasicBlock(*I); MCE.finishFunction(MF); DEBUG(std::cerr << "Finishing function " << MF.getFunction()->getName() << "\n"); ConstantMap.clear(); for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { long Location = BBLocations[BBRefs[i].first]; unsigned *Ref = BBRefs[i].second.first; MachineInstr *MI = BBRefs[i].second.second; DEBUG(std::cerr << "Fixup @" << std::hex << Ref << " to " << Location << " in instr: " << std::dec << *MI << "\n"); } // Resolve branches to BasicBlocks for the entire function for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { long Location = BBLocations[BBRefs[i].first]; unsigned *Ref = BBRefs[i].second.first; MachineInstr *MI = BBRefs[i].second.second; DEBUG(std::cerr << "attempting to resolve BB: " << i << "\n"); for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { MachineOperand &op = MI->getOperand(ii); if (op.isPCRelativeDisp()) { // the instruction's branch target is made such that it branches to // PC + (br target * 4), so undo that arithmetic here: // Location is the target of the branch // Ref is the location of the instruction, and hence the PC unsigned branchTarget = (Location - (long)Ref) >> 2; // Save the flags. bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false; if (op.opLoBits32()) { loBits32=true; } if (op.opHiBits32()) { hiBits32=true; } if (op.opLoBits64()) { loBits64=true; } if (op.opHiBits64()) { hiBits64=true; } MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, branchTarget); if (loBits32) { MI->setOperandLo32(ii); } else if (hiBits32) { MI->setOperandHi32(ii); } else if (loBits64) { MI->setOperandLo64(ii); } else if (hiBits64) { MI->setOperandHi64(ii); } DEBUG(std::cerr << "Rewrote BB ref: "); unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI); *Ref = fixedInstr; break; } } } BBRefs.clear(); BBLocations.clear(); return false; } void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { currBB = MBB.getBasicBlock(); BBLocations[currBB] = MCE.getCurrentPCValue(); for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) emitWord(getBinaryCodeForInstr(**I)); } void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI, bool isPCRelative) { if (isPCRelative) { // must be a call, this is a major hack! // Try looking up the function to see if it is already compiled! if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) { intptr_t CurByte = MCE.getCurrentPCValue(); // The real target of the call is Addr = PC + (target * 4) // CurByte is the PC, Addr we just received return (void*) (((long)Addr - (long)CurByte) >> 2); } else { if (Function *F = dyn_cast(V)) { // Function has not yet been code generated! TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), cast(V)); // Delayed resolution... return (void*)(intptr_t)TheJITResolver->getLazyResolver(cast(V)); } else if (Constant *C = ConstantPointerRef::get(V)) { if (ConstantMap.find(C) != ConstantMap.end()) { return (void*) (intptr_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]); } else { std::cerr << "Constant: 0x" << std::hex << &*C << std::dec << ", " << *V << " not found in ConstantMap!\n"; abort(); } } else { std::cerr << "Unhandled global: " << *V << "\n"; abort(); } } } else { return (void*)(intptr_t)MCE.getGlobalValueAddress(V); } } #include "SparcV9CodeEmitter.inc"