//===- IntervalPartition.cpp - Interval Partition module code ----*- C++ -*--=// // // This file contains the definition of the cfg::IntervalPartition class, which // calculates and represent the interval partition of a function. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/IntervalIterator.h" #include "Support/STLExtras.h" using namespace cfg; using std::make_pair; AnalysisID IntervalPartition::ID(AnalysisID::create()); //===----------------------------------------------------------------------===// // IntervalPartition Implementation //===----------------------------------------------------------------------===// // destroy - Reset state back to before function was analyzed void IntervalPartition::destroy() { for_each(begin(), end(), deleter); IntervalMap.clear(); RootInterval = 0; } // addIntervalToPartition - Add an interval to the internal list of intervals, // and then add mappings from all of the basic blocks in the interval to the // interval itself (in the IntervalMap). // void IntervalPartition::addIntervalToPartition(Interval *I) { push_back(I); // Add mappings for all of the basic blocks in I to the IntervalPartition for (Interval::node_iterator It = I->Nodes.begin(), End = I->Nodes.end(); It != End; ++It) IntervalMap.insert(make_pair(*It, I)); } // updatePredecessors - Interval generation only sets the successor fields of // the interval data structures. After interval generation is complete, // run through all of the intervals and propogate successor info as // predecessor info. // void IntervalPartition::updatePredecessors(cfg::Interval *Int) { BasicBlock *Header = Int->getHeaderNode(); for (Interval::succ_iterator I = Int->Successors.begin(), E = Int->Successors.end(); I != E; ++I) getBlockInterval(*I)->Predecessors.push_back(Header); } // IntervalPartition ctor - Build the first level interval partition for the // specified function... // bool IntervalPartition::runOnFunction(Function *F) { assert(F->front() && "Cannot operate on prototypes!"); // Pass false to intervals_begin because we take ownership of it's memory function_interval_iterator I = intervals_begin(F, false); assert(I != intervals_end(F) && "No intervals in function!?!?!"); addIntervalToPartition(RootInterval = *I); ++I; // After the first one... // Add the rest of the intervals to the partition... for_each(I, intervals_end(F), bind_obj(this, &IntervalPartition::addIntervalToPartition)); // Now that we know all of the successor information, propogate this to the // predecessors for each block... for_each(begin(), end(), bind_obj(this, &IntervalPartition::updatePredecessors)); return false; } // IntervalPartition ctor - Build a reduced interval partition from an // existing interval graph. This takes an additional boolean parameter to // distinguish it from a copy constructor. Always pass in false for now. // IntervalPartition::IntervalPartition(IntervalPartition &IP, bool) { Interval *FunctionStart = IP.getRootInterval(); assert(FunctionStart && "Cannot operate on empty IntervalPartitions!"); // Pass false to intervals_begin because we take ownership of it's memory interval_part_interval_iterator I = intervals_begin(IP, false); assert(I != intervals_end(IP) && "No intervals in interval partition!?!?!"); addIntervalToPartition(RootInterval = *I); ++I; // After the first one... // Add the rest of the intervals to the partition... for_each(I, intervals_end(IP), bind_obj(this, &IntervalPartition::addIntervalToPartition)); // Now that we know all of the successor information, propogate this to the // predecessors for each block... for_each(begin(), end(), bind_obj(this, &IntervalPartition::updatePredecessors)); }