//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes how to lower LLVM code to machine code. This has two // main components: // // 1. Which ValueTypes are natively supported by the target. // 2. Which operations are supported for supported ValueTypes. // 3. Cost thresholds for alternative implementations of certain operations. // // In addition it has a few other components, like information about FP // immediates. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETLOWERING_H #define LLVM_TARGET_TARGETLOWERING_H #include "llvm/Constants.h" #include "llvm/InlineAsm.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/STLExtras.h" #include #include namespace llvm { class Value; class Function; class TargetMachine; class TargetData; class TargetRegisterClass; class SDNode; class SDOperand; class SelectionDAG; class MachineBasicBlock; class MachineInstr; class VectorType; class TargetSubtarget; //===----------------------------------------------------------------------===// /// TargetLowering - This class defines information used to lower LLVM code to /// legal SelectionDAG operators that the target instruction selector can accept /// natively. /// /// This class also defines callbacks that targets must implement to lower /// target-specific constructs to SelectionDAG operators. /// class TargetLowering { public: /// LegalizeAction - This enum indicates whether operations are valid for a /// target, and if not, what action should be used to make them valid. enum LegalizeAction { Legal, // The target natively supports this operation. Promote, // This operation should be executed in a larger type. Expand, // Try to expand this to other ops, otherwise use a libcall. Custom // Use the LowerOperation hook to implement custom lowering. }; enum OutOfRangeShiftAmount { Undefined, // Oversized shift amounts are undefined (default). Mask, // Shift amounts are auto masked (anded) to value size. Extend // Oversized shift pulls in zeros or sign bits. }; enum SetCCResultValue { UndefinedSetCCResult, // SetCC returns a garbage/unknown extend. ZeroOrOneSetCCResult, // SetCC returns a zero extended result. ZeroOrNegativeOneSetCCResult // SetCC returns a sign extended result. }; enum SchedPreference { SchedulingForLatency, // Scheduling for shortest total latency. SchedulingForRegPressure // Scheduling for lowest register pressure. }; explicit TargetLowering(TargetMachine &TM); virtual ~TargetLowering(); TargetMachine &getTargetMachine() const { return TM; } const TargetData *getTargetData() const { return TD; } bool isBigEndian() const { return !IsLittleEndian; } bool isLittleEndian() const { return IsLittleEndian; } MVT::ValueType getPointerTy() const { return PointerTy; } MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; } OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; } /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC /// codegen. bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; } /// isSelectExpensive - Return true if the select operation is expensive for /// this target. bool isSelectExpensive() const { return SelectIsExpensive; } /// isIntDivCheap() - Return true if integer divide is usually cheaper than /// a sequence of several shifts, adds, and multiplies for this target. bool isIntDivCheap() const { return IntDivIsCheap; } /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of /// srl/add/sra. bool isPow2DivCheap() const { return Pow2DivIsCheap; } /// getSetCCResultType - Return the ValueType of the result of setcc operations. virtual MVT::ValueType getSetCCResultType(const SDOperand &) const; /// getSetCCResultContents - For targets without boolean registers, this flag /// returns information about the contents of the high-bits in the setcc /// result register. SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;} /// getSchedulingPreference - Return target scheduling preference. SchedPreference getSchedulingPreference() const { return SchedPreferenceInfo; } /// getRegClassFor - Return the register class that should be used for the /// specified value type. This may only be called on legal types. TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const { assert(VT < array_lengthof(RegClassForVT)); TargetRegisterClass *RC = RegClassForVT[VT]; assert(RC && "This value type is not natively supported!"); return RC; } /// isTypeLegal - Return true if the target has native support for the /// specified value type. This means that it has a register that directly /// holds it without promotions or expansions. bool isTypeLegal(MVT::ValueType VT) const { assert(MVT::isExtendedVT(VT) || VT < array_lengthof(RegClassForVT)); return !MVT::isExtendedVT(VT) && RegClassForVT[VT] != 0; } class ValueTypeActionImpl { /// ValueTypeActions - This is a bitvector that contains two bits for each /// value type, where the two bits correspond to the LegalizeAction enum. /// This can be queried with "getTypeAction(VT)". uint32_t ValueTypeActions[2]; public: ValueTypeActionImpl() { ValueTypeActions[0] = ValueTypeActions[1] = 0; } ValueTypeActionImpl(const ValueTypeActionImpl &RHS) { ValueTypeActions[0] = RHS.ValueTypeActions[0]; ValueTypeActions[1] = RHS.ValueTypeActions[1]; } LegalizeAction getTypeAction(MVT::ValueType VT) const { if (MVT::isExtendedVT(VT)) { if (MVT::isVector(VT)) return Expand; if (MVT::isInteger(VT)) // First promote to a power-of-two size, then expand if necessary. return VT == MVT::RoundIntegerType(VT) ? Expand : Promote; assert(0 && "Unsupported extended type!"); } assert(VT<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0])); return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3); } void setTypeAction(MVT::ValueType VT, LegalizeAction Action) { assert(VT<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0])); ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31); } }; const ValueTypeActionImpl &getValueTypeActions() const { return ValueTypeActions; } /// getTypeAction - Return how we should legalize values of this type, either /// it is already legal (return 'Legal') or we need to promote it to a larger /// type (return 'Promote'), or we need to expand it into multiple registers /// of smaller integer type (return 'Expand'). 'Custom' is not an option. LegalizeAction getTypeAction(MVT::ValueType VT) const { return ValueTypeActions.getTypeAction(VT); } /// getTypeToTransformTo - For types supported by the target, this is an /// identity function. For types that must be promoted to larger types, this /// returns the larger type to promote to. For integer types that are larger /// than the largest integer register, this contains one step in the expansion /// to get to the smaller register. For illegal floating point types, this /// returns the integer type to transform to. MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const { if (!MVT::isExtendedVT(VT)) { assert(VT < array_lengthof(TransformToType)); MVT::ValueType NVT = TransformToType[VT]; assert(getTypeAction(NVT) != Promote && "Promote may not follow Expand or Promote"); return NVT; } if (MVT::isVector(VT)) return MVT::getVectorType(MVT::getVectorElementType(VT), MVT::getVectorNumElements(VT) / 2); if (MVT::isInteger(VT)) { MVT::ValueType NVT = MVT::RoundIntegerType(VT); if (NVT == VT) // Size is a power of two - expand to half the size. return MVT::getIntegerType(MVT::getSizeInBits(VT) / 2); else // Promote to a power of two size, avoiding multi-step promotion. return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT; } assert(0 && "Unsupported extended type!"); return MVT::ValueType(); // Not reached } /// getTypeToExpandTo - For types supported by the target, this is an /// identity function. For types that must be expanded (i.e. integer types /// that are larger than the largest integer register or illegal floating /// point types), this returns the largest legal type it will be expanded to. MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const { assert(!MVT::isVector(VT)); while (true) { switch (getTypeAction(VT)) { case Legal: return VT; case Expand: VT = getTypeToTransformTo(VT); break; default: assert(false && "Type is not legal nor is it to be expanded!"); return VT; } } return VT; } /// getVectorTypeBreakdown - Vector types are broken down into some number of /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. /// /// This method returns the number of registers needed, and the VT for each /// register. It also returns the VT and quantity of the intermediate values /// before they are promoted/expanded. /// unsigned getVectorTypeBreakdown(MVT::ValueType VT, MVT::ValueType &IntermediateVT, unsigned &NumIntermediates, MVT::ValueType &RegisterVT) const; typedef std::vector::const_iterator legal_fpimm_iterator; legal_fpimm_iterator legal_fpimm_begin() const { return LegalFPImmediates.begin(); } legal_fpimm_iterator legal_fpimm_end() const { return LegalFPImmediates.end(); } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const { return true; } /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is /// used by Targets can use this to indicate if there is a suitable /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant /// pool entry. virtual bool isVectorClearMaskLegal(std::vector &BVOps, MVT::ValueType EVT, SelectionDAG &DAG) const { return false; } /// getOperationAction - Return how this operation should be treated: either /// it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const { if (MVT::isExtendedVT(VT)) return Expand; assert(Op < array_lengthof(OpActions) && VT < sizeof(OpActions[0])*4 && "Table isn't big enough!"); return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3); } /// isOperationLegal - Return true if the specified operation is legal on this /// target. bool isOperationLegal(unsigned Op, MVT::ValueType VT) const { return getOperationAction(Op, VT) == Legal || getOperationAction(Op, VT) == Custom; } /// getLoadXAction - Return how this load with extension should be treated: /// either it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const { assert(LType < array_lengthof(LoadXActions) && VT < sizeof(LoadXActions[0])*4 && "Table isn't big enough!"); return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3); } /// isLoadXLegal - Return true if the specified load with extension is legal /// on this target. bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const { return !MVT::isExtendedVT(VT) && (getLoadXAction(LType, VT) == Legal || getLoadXAction(LType, VT) == Custom); } /// getTruncStoreAction - Return how this store with truncation should be /// treated: either it is legal, needs to be promoted to a larger size, needs /// to be expanded to some other code sequence, or the target has a custom /// expander for it. LegalizeAction getTruncStoreAction(MVT::ValueType ValVT, MVT::ValueType MemVT) const { assert(ValVT < array_lengthof(TruncStoreActions) && MemVT < sizeof(TruncStoreActions[0])*4 && "Table isn't big enough!"); return (LegalizeAction)((TruncStoreActions[ValVT] >> (2*MemVT)) & 3); } /// isTruncStoreLegal - Return true if the specified store with truncation is /// legal on this target. bool isTruncStoreLegal(MVT::ValueType ValVT, MVT::ValueType MemVT) const { return !MVT::isExtendedVT(MemVT) && (getTruncStoreAction(ValVT, MemVT) == Legal || getTruncStoreAction(ValVT, MemVT) == Custom); } /// getIndexedLoadAction - Return how the indexed load should be treated: /// either it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const { assert(IdxMode < array_lengthof(IndexedModeActions[0]) && VT < sizeof(IndexedModeActions[0][0])*4 && "Table isn't big enough!"); return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3); } /// isIndexedLoadLegal - Return true if the specified indexed load is legal /// on this target. bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const { return getIndexedLoadAction(IdxMode, VT) == Legal || getIndexedLoadAction(IdxMode, VT) == Custom; } /// getIndexedStoreAction - Return how the indexed store should be treated: /// either it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const { assert(IdxMode < array_lengthof(IndexedModeActions[1]) && VT < sizeof(IndexedModeActions[1][0])*4 && "Table isn't big enough!"); return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3); } /// isIndexedStoreLegal - Return true if the specified indexed load is legal /// on this target. bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const { return getIndexedStoreAction(IdxMode, VT) == Legal || getIndexedStoreAction(IdxMode, VT) == Custom; } /// getConvertAction - Return how the conversion should be treated: /// either it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT) const { assert(FromVT < array_lengthof(ConvertActions) && ToVT < sizeof(ConvertActions[0])*4 && "Table isn't big enough!"); return (LegalizeAction)((ConvertActions[FromVT] >> (2*ToVT)) & 3); } /// isConvertLegal - Return true if the specified conversion is legal /// on this target. bool isConvertLegal(MVT::ValueType FromVT, MVT::ValueType ToVT) const { return getConvertAction(FromVT, ToVT) == Legal || getConvertAction(FromVT, ToVT) == Custom; } /// getTypeToPromoteTo - If the action for this operation is to promote, this /// method returns the ValueType to promote to. MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const { assert(getOperationAction(Op, VT) == Promote && "This operation isn't promoted!"); // See if this has an explicit type specified. std::map, MVT::ValueType>::const_iterator PTTI = PromoteToType.find(std::make_pair(Op, VT)); if (PTTI != PromoteToType.end()) return PTTI->second; assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) && "Cannot autopromote this type, add it with AddPromotedToType."); MVT::ValueType NVT = VT; do { NVT = (MVT::ValueType)(NVT+1); assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid && "Didn't find type to promote to!"); } while (!isTypeLegal(NVT) || getOperationAction(Op, NVT) == Promote); return NVT; } /// getValueType - Return the MVT::ValueType corresponding to this LLVM type. /// This is fixed by the LLVM operations except for the pointer size. If /// AllowUnknown is true, this will return MVT::Other for types with no MVT /// counterpart (e.g. structs), otherwise it will assert. MVT::ValueType getValueType(const Type *Ty, bool AllowUnknown = false) const { MVT::ValueType VT = MVT::getValueType(Ty, AllowUnknown); return VT == MVT::iPTR ? PointerTy : VT; } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. This is the actual /// alignment, not its logarithm. virtual unsigned getByValTypeAlignment(const Type *Ty) const; /// getRegisterType - Return the type of registers that this ValueType will /// eventually require. MVT::ValueType getRegisterType(MVT::ValueType VT) const { if (!MVT::isExtendedVT(VT)) { assert(VT < array_lengthof(RegisterTypeForVT)); return RegisterTypeForVT[VT]; } if (MVT::isVector(VT)) { MVT::ValueType VT1, RegisterVT; unsigned NumIntermediates; (void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT); return RegisterVT; } if (MVT::isInteger(VT)) { return getRegisterType(getTypeToTransformTo(VT)); } assert(0 && "Unsupported extended type!"); return MVT::ValueType(); // Not reached } /// getNumRegisters - Return the number of registers that this ValueType will /// eventually require. This is one for any types promoted to live in larger /// registers, but may be more than one for types (like i64) that are split /// into pieces. For types like i140, which are first promoted then expanded, /// it is the number of registers needed to hold all the bits of the original /// type. For an i140 on a 32 bit machine this means 5 registers. unsigned getNumRegisters(MVT::ValueType VT) const { if (!MVT::isExtendedVT(VT)) { assert(VT < array_lengthof(NumRegistersForVT)); return NumRegistersForVT[VT]; } if (MVT::isVector(VT)) { MVT::ValueType VT1, VT2; unsigned NumIntermediates; return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2); } if (MVT::isInteger(VT)) { unsigned BitWidth = MVT::getSizeInBits(VT); unsigned RegWidth = MVT::getSizeInBits(getRegisterType(VT)); return (BitWidth + RegWidth - 1) / RegWidth; } assert(0 && "Unsupported extended type!"); return 0; // Not reached } /// ShouldShrinkFPConstant - If true, then instruction selection should /// seek to shrink the FP constant of the specified type to a smaller type /// in order to save space and / or reduce runtime. virtual bool ShouldShrinkFPConstant(MVT::ValueType VT) const { return true; } /// hasTargetDAGCombine - If true, the target has custom DAG combine /// transformations that it can perform for the specified node. bool hasTargetDAGCombine(ISD::NodeType NT) const { assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7)); } /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memset. The value is set by the target at the /// performance threshold for such a replacement. /// @brief Get maximum # of store operations permitted for llvm.memset unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; } /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memcpy. The value is set by the target at the /// performance threshold for such a replacement. /// @brief Get maximum # of store operations permitted for llvm.memcpy unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; } /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memmove. The value is set by the target at the /// performance threshold for such a replacement. /// @brief Get maximum # of store operations permitted for llvm.memmove unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; } /// This function returns true if the target allows unaligned memory accesses. /// This is used, for example, in situations where an array copy/move/set is /// converted to a sequence of store operations. It's use helps to ensure that /// such replacements don't generate code that causes an alignment error /// (trap) on the target machine. /// @brief Determine if the target supports unaligned memory accesses. bool allowsUnalignedMemoryAccesses() const { return allowUnalignedMemoryAccesses; } /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp /// to implement llvm.setjmp. bool usesUnderscoreSetJmp() const { return UseUnderscoreSetJmp; } /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp /// to implement llvm.longjmp. bool usesUnderscoreLongJmp() const { return UseUnderscoreLongJmp; } /// getStackPointerRegisterToSaveRestore - If a physical register, this /// specifies the register that llvm.savestack/llvm.restorestack should save /// and restore. unsigned getStackPointerRegisterToSaveRestore() const { return StackPointerRegisterToSaveRestore; } /// getExceptionAddressRegister - If a physical register, this returns /// the register that receives the exception address on entry to a landing /// pad. unsigned getExceptionAddressRegister() const { return ExceptionPointerRegister; } /// getExceptionSelectorRegister - If a physical register, this returns /// the register that receives the exception typeid on entry to a landing /// pad. unsigned getExceptionSelectorRegister() const { return ExceptionSelectorRegister; } /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never /// set, the default is 200) unsigned getJumpBufSize() const { return JumpBufSize; } /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes /// (if never set, the default is 0) unsigned getJumpBufAlignment() const { return JumpBufAlignment; } /// getIfCvtBlockLimit - returns the target specific if-conversion block size /// limit. Any block whose size is greater should not be predicated. unsigned getIfCvtBlockSizeLimit() const { return IfCvtBlockSizeLimit; } /// getIfCvtDupBlockLimit - returns the target specific size limit for a /// block to be considered for duplication. Any block whose size is greater /// should not be duplicated to facilitate its predication. unsigned getIfCvtDupBlockSizeLimit() const { return IfCvtDupBlockSizeLimit; } /// getPrefLoopAlignment - return the preferred loop alignment. /// unsigned getPrefLoopAlignment() const { return PrefLoopAlignment; } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base, SDOperand &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) { return false; } /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDOperand &Base, SDOperand &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) { return false; } /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC /// jumptable. virtual SDOperand getPICJumpTableRelocBase(SDOperand Table, SelectionDAG &DAG) const; //===--------------------------------------------------------------------===// // TargetLowering Optimization Methods // /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two /// SDOperands for returning information from TargetLowering to its clients /// that want to combine struct TargetLoweringOpt { SelectionDAG &DAG; bool AfterLegalize; SDOperand Old; SDOperand New; explicit TargetLoweringOpt(SelectionDAG &InDAG, bool afterLegalize) : DAG(InDAG), AfterLegalize(afterLegalize) {} bool CombineTo(SDOperand O, SDOperand N) { Old = O; New = N; return true; } /// ShrinkDemandedConstant - Check to see if the specified operand of the /// specified instruction is a constant integer. If so, check to see if /// there are any bits set in the constant that are not demanded. If so, /// shrink the constant and return true. bool ShrinkDemandedConstant(SDOperand Op, const APInt &Demanded); }; /// SimplifyDemandedBits - Look at Op. At this point, we know that only the /// DemandedMask bits of the result of Op are ever used downstream. If we can /// use this information to simplify Op, create a new simplified DAG node and /// return true, returning the original and new nodes in Old and New. /// Otherwise, analyze the expression and return a mask of KnownOne and /// KnownZero bits for the expression (used to simplify the caller). /// The KnownZero/One bits may only be accurate for those bits in the /// DemandedMask. bool SimplifyDemandedBits(SDOperand Op, const APInt &DemandedMask, APInt &KnownZero, APInt &KnownOne, TargetLoweringOpt &TLO, unsigned Depth = 0) const; /// computeMaskedBitsForTargetNode - Determine which of the bits specified in /// Mask are known to be either zero or one and return them in the /// KnownZero/KnownOne bitsets. virtual void computeMaskedBitsForTargetNode(const SDOperand Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth = 0) const; /// ComputeNumSignBitsForTargetNode - This method can be implemented by /// targets that want to expose additional information about sign bits to the /// DAG Combiner. virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op, unsigned Depth = 0) const; struct DAGCombinerInfo { void *DC; // The DAG Combiner object. bool BeforeLegalize; bool CalledByLegalizer; public: SelectionDAG &DAG; DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc) : DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {} bool isBeforeLegalize() const { return BeforeLegalize; } bool isCalledByLegalizer() const { return CalledByLegalizer; } void AddToWorklist(SDNode *N); SDOperand CombineTo(SDNode *N, const std::vector &To); SDOperand CombineTo(SDNode *N, SDOperand Res); SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1); }; /// SimplifySetCC - Try to simplify a setcc built with the specified operands /// and cc. If it is unable to simplify it, return a null SDOperand. SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI) const; /// PerformDAGCombine - This method will be invoked for all target nodes and /// for any target-independent nodes that the target has registered with /// invoke it for. /// /// The semantics are as follows: /// Return Value: /// SDOperand.Val == 0 - No change was made /// SDOperand.Val == N - N was replaced, is dead, and is already handled. /// otherwise - N should be replaced by the returned Operand. /// /// In addition, methods provided by DAGCombinerInfo may be used to perform /// more complex transformations. /// virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; //===--------------------------------------------------------------------===// // TargetLowering Configuration Methods - These methods should be invoked by // the derived class constructor to configure this object for the target. // protected: /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a /// GOT for PC-relative code. void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; } /// setShiftAmountType - Describe the type that should be used for shift /// amounts. This type defaults to the pointer type. void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; } /// setSetCCResultContents - Specify how the target extends the result of a /// setcc operation in a register. void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; } /// setSchedulingPreference - Specify the target scheduling preference. void setSchedulingPreference(SchedPreference Pref) { SchedPreferenceInfo = Pref; } /// setShiftAmountFlavor - Describe how the target handles out of range shift /// amounts. void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) { ShiftAmtHandling = OORSA; } /// setUseUnderscoreSetJmp - Indicate whether this target prefers to /// use _setjmp to implement llvm.setjmp or the non _ version. /// Defaults to false. void setUseUnderscoreSetJmp(bool Val) { UseUnderscoreSetJmp = Val; } /// setUseUnderscoreLongJmp - Indicate whether this target prefers to /// use _longjmp to implement llvm.longjmp or the non _ version. /// Defaults to false. void setUseUnderscoreLongJmp(bool Val) { UseUnderscoreLongJmp = Val; } /// setStackPointerRegisterToSaveRestore - If set to a physical register, this /// specifies the register that llvm.savestack/llvm.restorestack should save /// and restore. void setStackPointerRegisterToSaveRestore(unsigned R) { StackPointerRegisterToSaveRestore = R; } /// setExceptionPointerRegister - If set to a physical register, this sets /// the register that receives the exception address on entry to a landing /// pad. void setExceptionPointerRegister(unsigned R) { ExceptionPointerRegister = R; } /// setExceptionSelectorRegister - If set to a physical register, this sets /// the register that receives the exception typeid on entry to a landing /// pad. void setExceptionSelectorRegister(unsigned R) { ExceptionSelectorRegister = R; } /// SelectIsExpensive - Tells the code generator not to expand operations /// into sequences that use the select operations if possible. void setSelectIsExpensive() { SelectIsExpensive = true; } /// setIntDivIsCheap - Tells the code generator that integer divide is /// expensive, and if possible, should be replaced by an alternate sequence /// of instructions not containing an integer divide. void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; } /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate /// srl/add/sra for a signed divide by power of two, and let the target handle /// it. void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; } /// addRegisterClass - Add the specified register class as an available /// regclass for the specified value type. This indicates the selector can /// handle values of that class natively. void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) { assert(VT < array_lengthof(RegClassForVT)); AvailableRegClasses.push_back(std::make_pair(VT, RC)); RegClassForVT[VT] = RC; } /// computeRegisterProperties - Once all of the register classes are added, /// this allows us to compute derived properties we expose. void computeRegisterProperties(); /// setOperationAction - Indicate that the specified operation does not work /// with the specified type and indicate what to do about it. void setOperationAction(unsigned Op, MVT::ValueType VT, LegalizeAction Action) { assert(VT < sizeof(OpActions[0])*4 && Op < array_lengthof(OpActions) && "Table isn't big enough!"); OpActions[Op] &= ~(uint64_t(3UL) << VT*2); OpActions[Op] |= (uint64_t)Action << VT*2; } /// setLoadXAction - Indicate that the specified load with extension does not /// work with the with specified type and indicate what to do about it. void setLoadXAction(unsigned ExtType, MVT::ValueType VT, LegalizeAction Action) { assert(VT < sizeof(LoadXActions[0])*4 && ExtType < array_lengthof(LoadXActions) && "Table isn't big enough!"); LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2); LoadXActions[ExtType] |= (uint64_t)Action << VT*2; } /// setTruncStoreAction - Indicate that the specified truncating store does /// not work with the with specified type and indicate what to do about it. void setTruncStoreAction(MVT::ValueType ValVT, MVT::ValueType MemVT, LegalizeAction Action) { assert(ValVT < array_lengthof(TruncStoreActions) && MemVT < sizeof(TruncStoreActions[0])*4 && "Table isn't big enough!"); TruncStoreActions[ValVT] &= ~(uint64_t(3UL) << MemVT*2); TruncStoreActions[ValVT] |= (uint64_t)Action << MemVT*2; } /// setIndexedLoadAction - Indicate that the specified indexed load does or /// does not work with the with specified type and indicate what to do abort /// it. NOTE: All indexed mode loads are initialized to Expand in /// TargetLowering.cpp void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT, LegalizeAction Action) { assert(VT < sizeof(IndexedModeActions[0])*4 && IdxMode < array_lengthof(IndexedModeActions[0]) && "Table isn't big enough!"); IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2); IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2; } /// setIndexedStoreAction - Indicate that the specified indexed store does or /// does not work with the with specified type and indicate what to do about /// it. NOTE: All indexed mode stores are initialized to Expand in /// TargetLowering.cpp void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT, LegalizeAction Action) { assert(VT < sizeof(IndexedModeActions[1][0])*4 && IdxMode < array_lengthof(IndexedModeActions[1]) && "Table isn't big enough!"); IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2); IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2; } /// setConvertAction - Indicate that the specified conversion does or does /// not work with the with specified type and indicate what to do about it. void setConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT, LegalizeAction Action) { assert(FromVT < array_lengthof(ConvertActions) && ToVT < sizeof(ConvertActions[0])*4 && "Table isn't big enough!"); ConvertActions[FromVT] &= ~(uint64_t(3UL) << ToVT*2); ConvertActions[FromVT] |= (uint64_t)Action << ToVT*2; } /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the /// promotion code defaults to trying a larger integer/fp until it can find /// one that works. If that default is insufficient, this method can be used /// by the target to override the default. void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT, MVT::ValueType DestVT) { PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT; } /// addLegalFPImmediate - Indicate that this target can instruction select /// the specified FP immediate natively. void addLegalFPImmediate(const APFloat& Imm) { LegalFPImmediates.push_back(Imm); } /// setTargetDAGCombine - Targets should invoke this method for each target /// independent node that they want to provide a custom DAG combiner for by /// implementing the PerformDAGCombine virtual method. void setTargetDAGCombine(ISD::NodeType NT) { assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7); } /// setJumpBufSize - Set the target's required jmp_buf buffer size (in /// bytes); default is 200 void setJumpBufSize(unsigned Size) { JumpBufSize = Size; } /// setJumpBufAlignment - Set the target's required jmp_buf buffer /// alignment (in bytes); default is 0 void setJumpBufAlignment(unsigned Align) { JumpBufAlignment = Align; } /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size /// limit (in number of instructions); default is 2. void setIfCvtBlockSizeLimit(unsigned Limit) { IfCvtBlockSizeLimit = Limit; } /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number /// of instructions) to be considered for code duplication during /// if-conversion; default is 2. void setIfCvtDupBlockSizeLimit(unsigned Limit) { IfCvtDupBlockSizeLimit = Limit; } /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default /// alignment is zero, it means the target does not care about loop alignment. void setPrefLoopAlignment(unsigned Align) { PrefLoopAlignment = Align; } public: virtual const TargetSubtarget *getSubtarget() { assert(0 && "Not Implemented"); return NULL; // this is here to silence compiler errors } //===--------------------------------------------------------------------===// // Lowering methods - These methods must be implemented by targets so that // the SelectionDAGLowering code knows how to lower these. // /// LowerArguments - This hook must be implemented to indicate how we should /// lower the arguments for the specified function, into the specified DAG. virtual std::vector LowerArguments(Function &F, SelectionDAG &DAG); /// LowerCallTo - This hook lowers an abstract call to a function into an /// actual call. This returns a pair of operands. The first element is the /// return value for the function (if RetTy is not VoidTy). The second /// element is the outgoing token chain. struct ArgListEntry { SDOperand Node; const Type* Ty; bool isSExt; bool isZExt; bool isInReg; bool isSRet; bool isNest; bool isByVal; uint16_t Alignment; ArgListEntry() : isSExt(false), isZExt(false), isInReg(false), isSRet(false), isNest(false), isByVal(false), Alignment(0) { } }; typedef std::vector ArgListTy; virtual std::pair LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetSExt, bool RetZExt, bool isVarArg, unsigned CallingConv, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); virtual SDOperand LowerMEMCPY(SDOperand Op, SelectionDAG &DAG); virtual SDOperand LowerMEMCPYCall(SDOperand Chain, SDOperand Dest, SDOperand Source, SDOperand Count, SelectionDAG &DAG); virtual SDOperand LowerMEMCPYInline(SDOperand Chain, SDOperand Dest, SDOperand Source, unsigned Size, unsigned Align, SelectionDAG &DAG) { assert(0 && "Not Implemented"); return SDOperand(); // this is here to silence compiler errors } /// LowerOperation - This callback is invoked for operations that are /// unsupported by the target, which are registered to use 'custom' lowering, /// and whose defined values are all legal. /// If the target has no operations that require custom lowering, it need not /// implement this. The default implementation of this aborts. virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG); /// ExpandOperationResult - This callback is invoked for operations that are /// unsupported by the target, which are registered to use 'custom' lowering, /// and whose result type needs to be expanded. This must return a node whose /// results precisely match the results of the input node. This typically /// involves a MERGE_VALUES node and/or BUILD_PAIR. /// /// If the target has no operations that require custom lowering, it need not /// implement this. The default implementation of this aborts. virtual SDNode *ExpandOperationResult(SDNode *N, SelectionDAG &DAG) { assert(0 && "ExpandOperationResult not implemented for this target!"); return 0; } /// IsEligibleForTailCallOptimization - Check whether the call is eligible for /// tail call optimization. Targets which want to do tail call optimization /// should override this function. virtual bool IsEligibleForTailCallOptimization(SDOperand Call, SDOperand Ret, SelectionDAG &DAG) const { return false; } /// CustomPromoteOperation - This callback is invoked for operations that are /// unsupported by the target, are registered to use 'custom' lowering, and /// whose type needs to be promoted. virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG); /// getTargetNodeName() - This method returns the name of a target specific /// DAG node. virtual const char *getTargetNodeName(unsigned Opcode) const; //===--------------------------------------------------------------------===// // Inline Asm Support hooks // enum ConstraintType { C_Register, // Constraint represents a single register. C_RegisterClass, // Constraint represents one or more registers. C_Memory, // Memory constraint. C_Other, // Something else. C_Unknown // Unsupported constraint. }; /// AsmOperandInfo - This contains information for each constraint that we are /// lowering. struct AsmOperandInfo : public InlineAsm::ConstraintInfo { /// ConstraintCode - This contains the actual string for the code, like "m". std::string ConstraintCode; /// ConstraintType - Information about the constraint code, e.g. Register, /// RegisterClass, Memory, Other, Unknown. TargetLowering::ConstraintType ConstraintType; /// CallOperandval - If this is the result output operand or a /// clobber, this is null, otherwise it is the incoming operand to the /// CallInst. This gets modified as the asm is processed. Value *CallOperandVal; /// ConstraintVT - The ValueType for the operand value. MVT::ValueType ConstraintVT; AsmOperandInfo(const InlineAsm::ConstraintInfo &info) : InlineAsm::ConstraintInfo(info), ConstraintType(TargetLowering::C_Unknown), CallOperandVal(0), ConstraintVT(MVT::Other) { } /// getConstraintGenerality - Return an integer indicating how general CT is. unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { switch (CT) { default: assert(0 && "Unknown constraint type!"); case TargetLowering::C_Other: case TargetLowering::C_Unknown: return 0; case TargetLowering::C_Register: return 1; case TargetLowering::C_RegisterClass: return 2; case TargetLowering::C_Memory: return 3; } } /// ComputeConstraintToUse - Determines the constraint code and constraint /// type to use. void ComputeConstraintToUse(const TargetLowering &TLI) { assert(!Codes.empty() && "Must have at least one constraint"); std::string *Current = &Codes[0]; TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current); if (Codes.size() == 1) { // Single-letter constraints ('r') are very common. ConstraintCode = *Current; ConstraintType = CurType; } else { unsigned CurGenerality = getConstraintGenerality(CurType); // If we have multiple constraints, try to pick the most general one ahead // of time. This isn't a wonderful solution, but handles common cases. for (unsigned j = 1, e = Codes.size(); j != e; ++j) { TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]); unsigned ThisGenerality = getConstraintGenerality(ThisType); if (ThisGenerality > CurGenerality) { // This constraint letter is more general than the previous one, // use it. CurType = ThisType; Current = &Codes[j]; CurGenerality = ThisGenerality; } } ConstraintCode = *Current; ConstraintType = CurType; } if (ConstraintCode == "X" && CallOperandVal) { if (isa(CallOperandVal) || isa(CallOperandVal)) return; // This matches anything. Labels and constants we handle elsewhere // ('X' is the only thing that matches labels). Otherwise, try to // resolve it to something we know about by looking at the actual // operand type. std::string s = ""; TLI.lowerXConstraint(ConstraintVT, s); if (s!="") { ConstraintCode = s; ConstraintType = TLI.getConstraintType(ConstraintCode); } } } }; /// getConstraintType - Given a constraint, return the type of constraint it /// is for this target. virtual ConstraintType getConstraintType(const std::string &Constraint) const; /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"), /// return a list of registers that can be used to satisfy the constraint. /// This should only be used for C_RegisterClass constraints. virtual std::vector getRegClassForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const; /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g. /// {edx}), return the register number and the register class for the /// register. /// /// Given a register class constraint, like 'r', if this corresponds directly /// to an LLVM register class, return a register of 0 and the register class /// pointer. /// /// This should only be used for C_Register constraints. On error, /// this returns a register number of 0 and a null register class pointer.. virtual std::pair getRegForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const; /// LowerXConstraint - try to replace an X constraint, which matches anything, /// with another that has more specific requirements based on the type of the /// corresponding operand. virtual void lowerXConstraint(MVT::ValueType ConstraintVT, std::string&) const; /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. virtual void LowerAsmOperandForConstraint(SDOperand Op, char ConstraintLetter, std::vector &Ops, SelectionDAG &DAG); //===--------------------------------------------------------------------===// // Scheduler hooks // // EmitInstrWithCustomInserter - This method should be implemented by targets // that mark instructions with the 'usesCustomDAGSchedInserter' flag. These // instructions are special in various ways, which require special support to // insert. The specified MachineInstr is created but not inserted into any // basic blocks, and the scheduler passes ownership of it to this method. virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB); //===--------------------------------------------------------------------===// // Addressing mode description hooks (used by LSR etc). // /// AddrMode - This represents an addressing mode of: /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg /// If BaseGV is null, there is no BaseGV. /// If BaseOffs is zero, there is no base offset. /// If HasBaseReg is false, there is no base register. /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with /// no scale. /// struct AddrMode { GlobalValue *BaseGV; int64_t BaseOffs; bool HasBaseReg; int64_t Scale; AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {} }; /// isLegalAddressingMode - Return true if the addressing mode represented by /// AM is legal for this target, for a load/store of the specified type. /// TODO: Handle pre/postinc as well. virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const; /// isTruncateFree - Return true if it's free to truncate a value of /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in /// register EAX to i16 by referencing its sub-register AX. virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const { return false; } virtual bool isTruncateFree(MVT::ValueType VT1, MVT::ValueType VT2) const { return false; } //===--------------------------------------------------------------------===// // Div utility functions // SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG, std::vector* Created) const; SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG, std::vector* Created) const; //===--------------------------------------------------------------------===// // Runtime Library hooks // /// setLibcallName - Rename the default libcall routine name for the specified /// libcall. void setLibcallName(RTLIB::Libcall Call, const char *Name) { LibcallRoutineNames[Call] = Name; } /// getLibcallName - Get the libcall routine name for the specified libcall. /// const char *getLibcallName(RTLIB::Libcall Call) const { return LibcallRoutineNames[Call]; } /// setCmpLibcallCC - Override the default CondCode to be used to test the /// result of the comparison libcall against zero. void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) { CmpLibcallCCs[Call] = CC; } /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of /// the comparison libcall against zero. ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const { return CmpLibcallCCs[Call]; } private: TargetMachine &TM; const TargetData *TD; /// IsLittleEndian - True if this is a little endian target. /// bool IsLittleEndian; /// PointerTy - The type to use for pointers, usually i32 or i64. /// MVT::ValueType PointerTy; /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen. /// bool UsesGlobalOffsetTable; /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever /// PointerTy is. MVT::ValueType ShiftAmountTy; OutOfRangeShiftAmount ShiftAmtHandling; /// SelectIsExpensive - Tells the code generator not to expand operations /// into sequences that use the select operations if possible. bool SelectIsExpensive; /// IntDivIsCheap - Tells the code generator not to expand integer divides by /// constants into a sequence of muls, adds, and shifts. This is a hack until /// a real cost model is in place. If we ever optimize for size, this will be /// set to true unconditionally. bool IntDivIsCheap; /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate /// srl/add/sra for a signed divide by power of two, and let the target handle /// it. bool Pow2DivIsCheap; /// SetCCResultContents - Information about the contents of the high-bits in /// the result of a setcc comparison operation. SetCCResultValue SetCCResultContents; /// SchedPreferenceInfo - The target scheduling preference: shortest possible /// total cycles or lowest register usage. SchedPreference SchedPreferenceInfo; /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement /// llvm.setjmp. Defaults to false. bool UseUnderscoreSetJmp; /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement /// llvm.longjmp. Defaults to false. bool UseUnderscoreLongJmp; /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers unsigned JumpBufSize; /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf /// buffers unsigned JumpBufAlignment; /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be /// if-converted. unsigned IfCvtBlockSizeLimit; /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be /// duplicated during if-conversion. unsigned IfCvtDupBlockSizeLimit; /// PrefLoopAlignment - The perferred loop alignment. /// unsigned PrefLoopAlignment; /// StackPointerRegisterToSaveRestore - If set to a physical register, this /// specifies the register that llvm.savestack/llvm.restorestack should save /// and restore. unsigned StackPointerRegisterToSaveRestore; /// ExceptionPointerRegister - If set to a physical register, this specifies /// the register that receives the exception address on entry to a landing /// pad. unsigned ExceptionPointerRegister; /// ExceptionSelectorRegister - If set to a physical register, this specifies /// the register that receives the exception typeid on entry to a landing /// pad. unsigned ExceptionSelectorRegister; /// RegClassForVT - This indicates the default register class to use for /// each ValueType the target supports natively. TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE]; MVT::ValueType RegisterTypeForVT[MVT::LAST_VALUETYPE]; /// TransformToType - For any value types we are promoting or expanding, this /// contains the value type that we are changing to. For Expanded types, this /// contains one step of the expand (e.g. i64 -> i32), even if there are /// multiple steps required (e.g. i64 -> i16). For types natively supported /// by the system, this holds the same type (e.g. i32 -> i32). MVT::ValueType TransformToType[MVT::LAST_VALUETYPE]; /// OpActions - For each operation and each value type, keep a LegalizeAction /// that indicates how instruction selection should deal with the operation. /// Most operations are Legal (aka, supported natively by the target), but /// operations that are not should be described. Note that operations on /// non-legal value types are not described here. uint64_t OpActions[156]; /// LoadXActions - For each load of load extension type and each value type, /// keep a LegalizeAction that indicates how instruction selection should deal /// with the load. uint64_t LoadXActions[ISD::LAST_LOADX_TYPE]; /// TruncStoreActions - For each truncating store, keep a LegalizeAction that /// indicates how instruction selection should deal with the store. uint64_t TruncStoreActions[MVT::LAST_VALUETYPE]; /// IndexedModeActions - For each indexed mode and each value type, keep a /// pair of LegalizeAction that indicates how instruction selection should /// deal with the load / store. uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE]; /// ConvertActions - For each conversion from source type to destination type, /// keep a LegalizeAction that indicates how instruction selection should /// deal with the conversion. /// Currently, this is used only for floating->floating conversions /// (FP_EXTEND and FP_ROUND). uint64_t ConvertActions[MVT::LAST_VALUETYPE]; ValueTypeActionImpl ValueTypeActions; std::vector LegalFPImmediates; std::vector > AvailableRegClasses; /// TargetDAGCombineArray - Targets can specify ISD nodes that they would /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(), /// which sets a bit in this array. unsigned char TargetDAGCombineArray[160/(sizeof(unsigned char)*8)]; /// PromoteToType - For operations that must be promoted to a specific type, /// this holds the destination type. This map should be sparse, so don't hold /// it as an array. /// /// Targets add entries to this map with AddPromotedToType(..), clients access /// this with getTypeToPromoteTo(..). std::map, MVT::ValueType> PromoteToType; /// LibcallRoutineNames - Stores the name each libcall. /// const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL]; /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result /// of each of the comparison libcall against zero. ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL]; protected: /// When lowering %llvm.memset this field specifies the maximum number of /// store operations that may be substituted for the call to memset. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memset will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine /// with 16-bit alignment would result in four 2-byte stores and one 1-byte /// store. This only applies to setting a constant array of a constant size. /// @brief Specify maximum number of store instructions per memset call. unsigned maxStoresPerMemset; /// When lowering %llvm.memcpy this field specifies the maximum number of /// store operations that may be substituted for a call to memcpy. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memcpy will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store /// and one 1-byte store. This only applies to copying a constant array of /// constant size. /// @brief Specify maximum bytes of store instructions per memcpy call. unsigned maxStoresPerMemcpy; /// When lowering %llvm.memmove this field specifies the maximum number of /// store instructions that may be substituted for a call to memmove. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memmove will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine /// with 8-bit alignment would result in nine 1-byte stores. This only /// applies to copying a constant array of constant size. /// @brief Specify maximum bytes of store instructions per memmove call. unsigned maxStoresPerMemmove; /// This field specifies whether the target machine permits unaligned memory /// accesses. This is used, for example, to determine the size of store /// operations when copying small arrays and other similar tasks. /// @brief Indicate whether the target permits unaligned memory accesses. bool allowUnalignedMemoryAccesses; }; } // end llvm namespace #endif