//===- ReadConst.cpp - Code to constants and constant pools ---------------===// // // This file implements functionality to deserialize constants and entire // constant pools. // // Note that this library should be as fast as possible, reentrant, and // threadsafe!! // //===----------------------------------------------------------------------===// #include "ReaderInternals.h" #include "llvm/Module.h" #include "llvm/BasicBlock.h" #include "llvm/ConstantVals.h" #include "llvm/GlobalVariable.h" #include #include using std::make_pair; using std::cerr; const Type *BytecodeParser::parseTypeConstant(const uchar *&Buf, const uchar *EndBuf) { unsigned PrimType; if (read_vbr(Buf, EndBuf, PrimType)) return failure(0); const Type *Val = 0; if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType))) return Val; switch (PrimType) { case Type::FunctionTyID: { unsigned Typ; if (read_vbr(Buf, EndBuf, Typ)) return failure(Val); const Type *RetType = getType(Typ); if (RetType == 0) return failure(Val); unsigned NumParams; if (read_vbr(Buf, EndBuf, NumParams)) return failure(Val); std::vector Params; while (NumParams--) { if (read_vbr(Buf, EndBuf, Typ)) return failure(Val); const Type *Ty = getType(Typ); if (Ty == 0) return failure(Val); Params.push_back(Ty); } bool isVarArg = Params.size() && Params.back() == Type::VoidTy; if (isVarArg) Params.pop_back(); return FunctionType::get(RetType, Params, isVarArg); } case Type::ArrayTyID: { unsigned ElTyp; if (read_vbr(Buf, EndBuf, ElTyp)) return failure(Val); const Type *ElementType = getType(ElTyp); if (ElementType == 0) return failure(Val); unsigned NumElements; if (read_vbr(Buf, EndBuf, NumElements)) return failure(Val); BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size=" << NumElements << "\n"); return ArrayType::get(ElementType, NumElements); } case Type::StructTyID: { unsigned Typ; std::vector Elements; if (read_vbr(Buf, EndBuf, Typ)) return failure(Val); while (Typ) { // List is terminated by void/0 typeid const Type *Ty = getType(Typ); if (Ty == 0) return failure(Val); Elements.push_back(Ty); if (read_vbr(Buf, EndBuf, Typ)) return failure(Val); } return StructType::get(Elements); } case Type::PointerTyID: { unsigned ElTyp; if (read_vbr(Buf, EndBuf, ElTyp)) return failure(Val); BCR_TRACE(5, "Pointer Type Constant #" << (ElTyp-14) << "\n"); const Type *ElementType = getType(ElTyp); if (ElementType == 0) return failure(Val); return PointerType::get(ElementType); } case Type::OpaqueTyID: { return OpaqueType::get(); } default: cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to deserialize" << " primitive Type " << PrimType << "\n"; return failure(Val); } } // refineAbstractType - The callback method is invoked when one of the // elements of TypeValues becomes more concrete... // void BytecodeParser::refineAbstractType(const DerivedType *OldType, const Type *NewType) { if (OldType == NewType && OldType->isAbstract()) return; // Type is modified, but same TypeValuesListTy::iterator I = find(MethodTypeValues.begin(), MethodTypeValues.end(), OldType); if (I == MethodTypeValues.end()) { I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), OldType); assert(I != ModuleTypeValues.end() && "Can't refine a type I don't know about!"); } if (OldType == NewType) { assert(!OldType->isAbstract()); I->removeUserFromConcrete(); } else { *I = NewType; // Update to point to new, more refined type. } } // parseTypeConstants - We have to use this wierd code to handle recursive // types. We know that recursive types will only reference the current slab of // values in the type plane, but they can forward reference types before they // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix // this ugly problem, we pesimistically insert an opaque type for each type we // are about to read. This means that forward references will resolve to // something and when we reread the type later, we can replace the opaque type // with a new resolved concrete type. // void debug_type_tables(); bool BytecodeParser::parseTypeConstants(const uchar *&Buf, const uchar *EndBuf, TypeValuesListTy &Tab, unsigned NumEntries) { assert(Tab.size() == 0 && "should not have read type constants in before!"); // Insert a bunch of opaque types to be resolved later... for (unsigned i = 0; i < NumEntries; ++i) Tab.push_back(PATypeHandle(OpaqueType::get(), this)); // Loop through reading all of the types. Forward types will make use of the // opaque types just inserted. // for (unsigned i = 0; i < NumEntries; ++i) { const Type *NewTy = parseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get(); if (NewTy == 0) return failure(true); BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy << "' Replacing: " << OldTy << "\n"); // Don't insertValue the new type... instead we want to replace the opaque // type with the new concrete value... // // Refine the abstract type to the new type. This causes all uses of the // abstract type to use the newty. This also will cause the opaque type // to be deleted... // cast(Tab[i].get())->refineAbstractTypeTo(NewTy); // This should have replace the old opaque type with the new type in the // value table... or with a preexisting type that was already in the system assert(Tab[i] != OldTy && "refineAbstractType didn't work!"); } BCR_TRACE(5, "Resulting types:\n"); for (unsigned i = 0; i < NumEntries; ++i) { BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n"); } debug_type_tables(); return false; } bool BytecodeParser::parseConstantValue(const uchar *&Buf, const uchar *EndBuf, const Type *Ty, Constant *&V) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: { unsigned Val; if (read_vbr(Buf, EndBuf, Val)) return failure(true); if (Val != 0 && Val != 1) return failure(true); V = ConstantBool::get(Val == 1); break; } case Type::UByteTyID: // Unsigned integer types... case Type::UShortTyID: case Type::UIntTyID: { unsigned Val; if (read_vbr(Buf, EndBuf, Val)) return failure(true); if (!ConstantUInt::isValueValidForType(Ty, Val)) return failure(true); V = ConstantUInt::get(Ty, Val); break; } case Type::ULongTyID: { uint64_t Val; if (read_vbr(Buf, EndBuf, Val)) return failure(true); V = ConstantUInt::get(Ty, Val); break; } case Type::SByteTyID: // Unsigned integer types... case Type::ShortTyID: case Type::IntTyID: { int Val; if (read_vbr(Buf, EndBuf, Val)) return failure(true); if (!ConstantSInt::isValueValidForType(Ty, Val)) return failure(true); V = ConstantSInt::get(Ty, Val); break; } case Type::LongTyID: { int64_t Val; if (read_vbr(Buf, EndBuf, Val)) return failure(true); V = ConstantSInt::get(Ty, Val); break; } case Type::FloatTyID: { float F; if (input_data(Buf, EndBuf, &F, &F+1)) return failure(true); V = ConstantFP::get(Ty, F); break; } case Type::DoubleTyID: { double Val; if (input_data(Buf, EndBuf, &Val, &Val+1)) return failure(true); V = ConstantFP::get(Ty, Val); break; } case Type::TypeTyID: assert(0 && "Type constants should be handled seperately!!!"); abort(); case Type::ArrayTyID: { const ArrayType *AT = cast(Ty); unsigned NumElements = AT->getNumElements(); std::vector Elements; while (NumElements--) { // Read all of the elements of the constant. unsigned Slot; if (read_vbr(Buf, EndBuf, Slot)) return failure(true); Value *V = getValue(AT->getElementType(), Slot, false); if (!V || !isa(V)) return failure(true); Elements.push_back(cast(V)); } V = ConstantArray::get(AT, Elements); break; } case Type::StructTyID: { const StructType *ST = cast(Ty); const StructType::ElementTypes &ET = ST->getElementTypes(); std::vector Elements; for (unsigned i = 0; i < ET.size(); ++i) { unsigned Slot; if (read_vbr(Buf, EndBuf, Slot)) return failure(true); Value *V = getValue(ET[i], Slot, false); if (!V || !isa(V)) return failure(true); Elements.push_back(cast(V)); } V = ConstantStruct::get(ST, Elements); break; } case Type::PointerTyID: { const PointerType *PT = cast(Ty); unsigned SubClass; if (read_vbr(Buf, EndBuf, SubClass)) return failure(true); switch (SubClass) { case 0: // ConstantPointerNull value... V = ConstantPointerNull::get(PT); break; case 1: { // ConstantPointerRef value... unsigned Slot; if (read_vbr(Buf, EndBuf, Slot)) return failure(true); BCR_TRACE(4, "CPPR: Type: '" << Ty << "' slot: " << Slot << "\n"); // Check to see if we have already read this global variable yet... Value *Val = getValue(PT, Slot, false); GlobalValue *GV; if (Val) { if (!(GV = dyn_cast(Val))) return failure(true); BCR_TRACE(5, "Value Found in ValueTable!\n"); } else { // Nope... see if we have previously forward ref'd it GlobalRefsType::iterator I = GlobalRefs.find(make_pair(PT, Slot)); if (I != GlobalRefs.end()) { BCR_TRACE(5, "Previous forward ref found!\n"); GV = I->second; } else { BCR_TRACE(5, "Creating new forward ref variable!\n"); // Create a placeholder for the global variable reference... GlobalVariable *GVar = new GlobalVariable(PT->getElementType(), false, true); // Keep track of the fact that we have a forward ref to recycle it GlobalRefs.insert(make_pair(make_pair(PT, Slot), GVar)); // Must temporarily push this value into the module table... TheModule->getGlobalList().push_back(GVar); GV = GVar; } } V = ConstantPointerRef::get(GV); break; } default: BCR_TRACE(5, "UNKNOWN Pointer Constant Type!\n"); return failure(true); } break; } default: cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to deserialize constant value of type '" << Ty->getName() << "'\n"; return failure(true); } return false; } bool BytecodeParser::ParseConstantPool(const uchar *&Buf, const uchar *EndBuf, ValueTable &Tab, TypeValuesListTy &TypeTab) { while (Buf < EndBuf) { unsigned NumEntries, Typ; if (read_vbr(Buf, EndBuf, NumEntries) || read_vbr(Buf, EndBuf, Typ)) return failure(true); const Type *Ty = getType(Typ); if (Ty == 0) return failure(true); BCR_TRACE(3, "Type: '" << Ty << "' NumEntries: " << NumEntries << "\n"); if (Typ == Type::TypeTyID) { if (parseTypeConstants(Buf, EndBuf, TypeTab, NumEntries)) return true; } else { for (unsigned i = 0; i < NumEntries; ++i) { Constant *I; if (parseConstantValue(Buf, EndBuf, Ty, I)) return failure(true); BCR_TRACE(4, "Read Constant: '" << I << "'\n"); if (insertValue(I, Tab) == -1) return failure(true); } } } if (Buf > EndBuf) return failure(true); return false; }