//===- llvm/Analysis/DominatorSet.h - Dominator Set Calculation --*- C++ -*--=// // // This file defines the following classes: // 1. DominatorSet: Calculates the [reverse] dominator set for a method // 2. ImmediateDominators: Calculates and holds a mapping between BasicBlocks // and their immediate dominator. // 3. DominatorTree: Represent the ImmediateDominator as an explicit tree // structure. // 4. DominanceFrontier: Calculate and hold the dominance frontier for a // method. // // These data structures are listed in increasing order of complexity. It // takes longer to calculate the dominator frontier, for example, than the // ImmediateDominator mapping. // //===----------------------------------------------------------------------===// #ifndef LLVM_DOMINATORS_H #define LLVM_DOMINATORS_H #include #include #include class Method; class BasicBlock; namespace cfg { //===----------------------------------------------------------------------===// // // DominatorSet - Maintain a set for every basic block in a // method, that represents the blocks that dominate the block. // class DominatorSet { public: typedef set DomSetType; // Dom set for a bb typedef map DomSetMapType; // Map of dom sets private: DomSetMapType Doms; const BasicBlock *Root; public: // DominatorSet ctor - Build either the dominator set or the post-dominator // set for a method... // DominatorSet(const Method *M, bool PostDomSet = false); // Accessor interface: typedef DomSetMapType::const_iterator const_iterator; inline const_iterator begin() const { return Doms.begin(); } inline const_iterator end() const { return Doms.end(); } inline const_iterator find(const BasicBlock* B) const { return Doms.find(B); } inline const BasicBlock *getRoot() const { return Root; } // getDominators - Return the set of basic blocks that dominate the specified // block. // inline const DomSetType &getDominators(const BasicBlock *BB) const { const_iterator I = find(BB); assert(I != end() && "BB not in method!"); return I->second; } // dominates - Return true if A dominates B. // inline bool dominates(const BasicBlock *A, const BasicBlock *B) const { return getDominators(B).count(A) != 0; } }; //===----------------------------------------------------------------------===// // // ImmediateDominators - Calculate the immediate dominator for each node in a // method. // class ImmediateDominators { map IDoms; const BasicBlock *Root; void calcIDoms(const DominatorSet &DS); public: // ImmediateDominators ctor - Calculate the idom mapping, for a method, or // from a dominator set calculated for something else... // inline ImmediateDominators(const DominatorSet &DS) : Root(DS.getRoot()) { calcIDoms(DS); // Can be used to make rev-idoms } // Accessor interface: typedef map IDomMapType; typedef IDomMapType::const_iterator const_iterator; inline const_iterator begin() const { return IDoms.begin(); } inline const_iterator end() const { return IDoms.end(); } inline const_iterator find(const BasicBlock* B) const { return IDoms.find(B);} inline const BasicBlock *getRoot() const { return Root; } // operator[] - Return the idom for the specified basic block. The start // node returns null, because it does not have an immediate dominator. // inline const BasicBlock *operator[](const BasicBlock *BB) const { map::const_iterator I = IDoms.find(BB); return I != IDoms.end() ? I->second : 0; } }; //===----------------------------------------------------------------------===// // // DominatorTree - Calculate the immediate dominator tree for a method. // class DominatorTree { class Node; const BasicBlock *Root; map Nodes; void calculate(const DominatorSet &DS); typedef map NodeMapType; public: class Node : public vector { friend class DominatorTree; const BasicBlock *TheNode; Node * const IDom; public: inline const BasicBlock *getNode() const { return TheNode; } inline Node *getIDom() const { return IDom; } inline const vector &getChildren() const { return *this; } // dominates - Returns true iff this dominates N. Note that this is not a // constant time operation! inline bool dominates(const Node *N) const { const Node *IDom; while ((IDom = N->getIDom()) != 0 && IDom != this) N = IDom; // Walk up the tree return IDom != 0; } private: inline Node(const BasicBlock *node, Node *iDom) : TheNode(node), IDom(iDom) {} inline Node *addChild(Node *C) { push_back(C); return C; } }; public: // DominatorTree ctors - Compute a dominator tree, given various amounts of // previous knowledge... //inline DominatorTree(const Method *M) { calculate(DominatorSet(M)); } inline DominatorTree(const DominatorSet &DS) : Root(DS.getRoot()) { calculate(DS); } DominatorTree(const ImmediateDominators &IDoms); ~DominatorTree(); inline const BasicBlock *getRoot() const { return Root; } inline const Node *operator[](const BasicBlock *BB) const { NodeMapType::const_iterator i = Nodes.find(BB); return (i != Nodes.end()) ? i->second : 0; } }; //===----------------------------------------------------------------------===// // // DominanceFrontier - Calculate the dominance frontiers for a method. // class DominanceFrontier { typedef set DomSetType; // Dom set for a bb typedef map DomSetMapType; // Map of dom sets private: DomSetMapType Frontiers; const BasicBlock *Root; const DomSetType &calcDomFrontier(const DominatorTree &DT, const DominatorTree::Node *Node); public: DominanceFrontier(const DominatorSet &DS) : Root(DS.getRoot()) { const DominatorTree DT(DS); calcDomFrontier(DT, DT[Root]); } DominanceFrontier(const ImmediateDominators &ID) : Root(ID.getRoot()) { const DominatorTree DT(ID); calcDomFrontier(DT, DT[Root]); } DominanceFrontier(const DominatorTree &DT) : Root(DT.getRoot()) { calcDomFrontier(DT, DT[Root]); } // Accessor interface: typedef DomSetMapType::const_iterator const_iterator; inline const_iterator begin() const { return Frontiers.begin(); } inline const_iterator end() const { return Frontiers.end(); } inline const_iterator find(const BasicBlock* B) const { return Frontiers.find(B);} inline const BasicBlock *getRoot() const { return Root; } }; } // End namespace cfg #endif