//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; void MCExpr::print(raw_ostream &OS) const { switch (getKind()) { case MCExpr::Target: return cast(this)->PrintImpl(OS); case MCExpr::Constant: OS << cast(*this).getValue(); return; case MCExpr::SymbolRef: { const MCSymbol &Sym = cast(*this).getSymbol(); // Parenthesize names that start with $ so that they don't look like // absolute names. if (Sym.getName()[0] == '$') OS << '(' << Sym << ')'; else OS << Sym; return; } case MCExpr::Unary: { const MCUnaryExpr &UE = cast(*this); switch (UE.getOpcode()) { default: assert(0 && "Invalid opcode!"); case MCUnaryExpr::LNot: OS << '!'; break; case MCUnaryExpr::Minus: OS << '-'; break; case MCUnaryExpr::Not: OS << '~'; break; case MCUnaryExpr::Plus: OS << '+'; break; } OS << *UE.getSubExpr(); return; } case MCExpr::Binary: { const MCBinaryExpr &BE = cast(*this); // Only print parens around the LHS if it is non-trivial. if (isa(BE.getLHS()) || isa(BE.getLHS())) { OS << *BE.getLHS(); } else { OS << '(' << *BE.getLHS() << ')'; } switch (BE.getOpcode()) { default: assert(0 && "Invalid opcode!"); case MCBinaryExpr::Add: // Print "X-42" instead of "X+-42". if (const MCConstantExpr *RHSC = dyn_cast(BE.getRHS())) { if (RHSC->getValue() < 0) { OS << RHSC->getValue(); return; } } OS << '+'; break; case MCBinaryExpr::And: OS << '&'; break; case MCBinaryExpr::Div: OS << '/'; break; case MCBinaryExpr::EQ: OS << "=="; break; case MCBinaryExpr::GT: OS << '>'; break; case MCBinaryExpr::GTE: OS << ">="; break; case MCBinaryExpr::LAnd: OS << "&&"; break; case MCBinaryExpr::LOr: OS << "||"; break; case MCBinaryExpr::LT: OS << '<'; break; case MCBinaryExpr::LTE: OS << "<="; break; case MCBinaryExpr::Mod: OS << '%'; break; case MCBinaryExpr::Mul: OS << '*'; break; case MCBinaryExpr::NE: OS << "!="; break; case MCBinaryExpr::Or: OS << '|'; break; case MCBinaryExpr::Shl: OS << "<<"; break; case MCBinaryExpr::Shr: OS << ">>"; break; case MCBinaryExpr::Sub: OS << '-'; break; case MCBinaryExpr::Xor: OS << '^'; break; } // Only print parens around the LHS if it is non-trivial. if (isa(BE.getRHS()) || isa(BE.getRHS())) { OS << *BE.getRHS(); } else { OS << '(' << *BE.getRHS() << ')'; } return; } } assert(0 && "Invalid expression kind!"); } void MCExpr::dump() const { print(dbgs()); dbgs() << '\n'; } /* *** */ const MCBinaryExpr *MCBinaryExpr::Create(Opcode Opc, const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return new (Ctx) MCBinaryExpr(Opc, LHS, RHS); } const MCUnaryExpr *MCUnaryExpr::Create(Opcode Opc, const MCExpr *Expr, MCContext &Ctx) { return new (Ctx) MCUnaryExpr(Opc, Expr); } const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) { return new (Ctx) MCConstantExpr(Value); } const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym, MCContext &Ctx) { return new (Ctx) MCSymbolRefExpr(Sym); } const MCSymbolRefExpr *MCSymbolRefExpr::Create(StringRef Name, MCContext &Ctx) { return Create(Ctx.GetOrCreateSymbol(Name), Ctx); } const MCSymbolRefExpr *MCSymbolRefExpr::CreateTemp(StringRef Name, MCContext &Ctx) { return Create(Ctx.GetOrCreateTemporarySymbol(Name), Ctx); } void MCTargetExpr::Anchor() {} /* *** */ bool MCExpr::EvaluateAsAbsolute(int64_t &Res) const { MCValue Value; if (!EvaluateAsRelocatable(Value) || !Value.isAbsolute()) return false; Res = Value.getConstant(); return true; } static bool EvaluateSymbolicAdd(const MCValue &LHS, const MCSymbol *RHS_A, const MCSymbol *RHS_B, int64_t RHS_Cst, MCValue &Res) { // We can't add or subtract two symbols. if ((LHS.getSymA() && RHS_A) || (LHS.getSymB() && RHS_B)) return false; const MCSymbol *A = LHS.getSymA() ? LHS.getSymA() : RHS_A; const MCSymbol *B = LHS.getSymB() ? LHS.getSymB() : RHS_B; if (B) { // If we have a negated symbol, then we must have also have a non-negated // symbol in order to encode the expression. We can do this check later to // permit expressions which eventually fold to a representable form -- such // as (a + (0 - b)) -- if necessary. if (!A) return false; } Res = MCValue::get(A, B, LHS.getConstant() + RHS_Cst); return true; } bool MCExpr::EvaluateAsRelocatable(MCValue &Res) const { switch (getKind()) { case Target: return cast(this)->EvaluateAsRelocatableImpl(Res); case Constant: Res = MCValue::get(cast(this)->getValue()); return true; case SymbolRef: { const MCSymbol &Sym = cast(this)->getSymbol(); // Evaluate recursively if this is a variable. if (Sym.isVariable()) return Sym.getValue()->EvaluateAsRelocatable(Res); Res = MCValue::get(&Sym, 0, 0); return true; } case Unary: { const MCUnaryExpr *AUE = cast(this); MCValue Value; if (!AUE->getSubExpr()->EvaluateAsRelocatable(Value)) return false; switch (AUE->getOpcode()) { case MCUnaryExpr::LNot: if (!Value.isAbsolute()) return false; Res = MCValue::get(!Value.getConstant()); break; case MCUnaryExpr::Minus: /// -(a - b + const) ==> (b - a - const) if (Value.getSymA() && !Value.getSymB()) return false; Res = MCValue::get(Value.getSymB(), Value.getSymA(), -Value.getConstant()); break; case MCUnaryExpr::Not: if (!Value.isAbsolute()) return false; Res = MCValue::get(~Value.getConstant()); break; case MCUnaryExpr::Plus: Res = Value; break; } return true; } case Binary: { const MCBinaryExpr *ABE = cast(this); MCValue LHSValue, RHSValue; if (!ABE->getLHS()->EvaluateAsRelocatable(LHSValue) || !ABE->getRHS()->EvaluateAsRelocatable(RHSValue)) return false; // We only support a few operations on non-constant expressions, handle // those first. if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) { switch (ABE->getOpcode()) { default: return false; case MCBinaryExpr::Sub: // Negate RHS and add. return EvaluateSymbolicAdd(LHSValue, RHSValue.getSymB(), RHSValue.getSymA(), -RHSValue.getConstant(), Res); case MCBinaryExpr::Add: return EvaluateSymbolicAdd(LHSValue, RHSValue.getSymA(), RHSValue.getSymB(), RHSValue.getConstant(), Res); } } // FIXME: We need target hooks for the evaluation. It may be limited in // width, and gas defines the result of comparisons and right shifts // differently from Apple as. int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant(); int64_t Result = 0; switch (ABE->getOpcode()) { case MCBinaryExpr::Add: Result = LHS + RHS; break; case MCBinaryExpr::And: Result = LHS & RHS; break; case MCBinaryExpr::Div: Result = LHS / RHS; break; case MCBinaryExpr::EQ: Result = LHS == RHS; break; case MCBinaryExpr::GT: Result = LHS > RHS; break; case MCBinaryExpr::GTE: Result = LHS >= RHS; break; case MCBinaryExpr::LAnd: Result = LHS && RHS; break; case MCBinaryExpr::LOr: Result = LHS || RHS; break; case MCBinaryExpr::LT: Result = LHS < RHS; break; case MCBinaryExpr::LTE: Result = LHS <= RHS; break; case MCBinaryExpr::Mod: Result = LHS % RHS; break; case MCBinaryExpr::Mul: Result = LHS * RHS; break; case MCBinaryExpr::NE: Result = LHS != RHS; break; case MCBinaryExpr::Or: Result = LHS | RHS; break; case MCBinaryExpr::Shl: Result = LHS << RHS; break; case MCBinaryExpr::Shr: Result = LHS >> RHS; break; case MCBinaryExpr::Sub: Result = LHS - RHS; break; case MCBinaryExpr::Xor: Result = LHS ^ RHS; break; } Res = MCValue::get(Result); return true; } } assert(0 && "Invalid assembly expression kind!"); return false; }