//===-- IA64AsmPrinter.cpp - Print out IA64 LLVM as assembly --------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Duraid Madina and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to assembly accepted by the GNU binutils 'gas' // assembler. The Intel 'ias' and HP-UX 'as' assemblers *may* choke on this // output, but if so that's a bug I'd like to hear about: please file a bug // report in bugzilla. FYI, the not too bad 'ias' assembler is bundled with // the Intel C/C++ compiler for Itanium Linux. // //===----------------------------------------------------------------------===// #include "IA64.h" #include "IA64TargetMachine.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Mangler.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; namespace { Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); struct IA64AsmPrinter : public AsmPrinter { std::set ExternalFunctionNames, ExternalObjectNames; IA64AsmPrinter(std::ostream &O, TargetMachine &TM) : AsmPrinter(O, TM) { CommentString = "//"; Data8bitsDirective = "\tdata1\t"; // FIXME: check that we are Data16bitsDirective = "\tdata2.ua\t"; // disabling auto-alignment Data32bitsDirective = "\tdata4.ua\t"; // properly Data64bitsDirective = "\tdata8.ua\t"; ZeroDirective = "\t.skip\t"; AsciiDirective = "\tstring\t"; GlobalVarAddrPrefix=""; GlobalVarAddrSuffix=""; FunctionAddrPrefix="@fptr("; FunctionAddrSuffix=")"; // FIXME: would be nice to have rodata (no 'w') when appropriate? ConstantPoolSection = "\n\t.section .data, \"aw\", \"progbits\"\n"; } virtual const char *getPassName() const { return "IA64 Assembly Printer"; } /// printInstruction - This method is automatically generated by tablegen /// from the instruction set description. This method returns true if the /// machine instruction was sufficiently described to print it, otherwise it /// returns false. bool printInstruction(const MachineInstr *MI); // This method is used by the tablegen'erated instruction printer. void printOperand(const MachineInstr *MI, unsigned OpNo){ const MachineOperand &MO = MI->getOperand(OpNo); if (MO.getType() == MachineOperand::MO_Register) { assert(MRegisterInfo::isPhysicalRegister(MO.getReg())&&"Not physref??"); //XXX Bug Workaround: See note in Printer::doInitialization about %. O << TM.getRegisterInfo()->get(MO.getReg()).Name; } else { printOp(MO); } } void printS8ImmOperand(const MachineInstr *MI, unsigned OpNo) { int val=(unsigned int)MI->getOperand(OpNo).getImmedValue(); if(val>=128) val=val-256; // if negative, flip sign O << val; } void printS14ImmOperand(const MachineInstr *MI, unsigned OpNo) { int val=(unsigned int)MI->getOperand(OpNo).getImmedValue(); if(val>=8192) val=val-16384; // if negative, flip sign O << val; } void printS22ImmOperand(const MachineInstr *MI, unsigned OpNo) { int val=(unsigned int)MI->getOperand(OpNo).getImmedValue(); if(val>=2097152) val=val-4194304; // if negative, flip sign O << val; } void printU64ImmOperand(const MachineInstr *MI, unsigned OpNo) { O << (uint64_t)MI->getOperand(OpNo).getImmedValue(); } void printS64ImmOperand(const MachineInstr *MI, unsigned OpNo) { // XXX : nasty hack to avoid GPREL22 "relocation truncated to fit" linker // errors - instead of add rX = @gprel(CPI), r1;; we now // emit movl rX = @gprel(CPIgetOperand(OpNo).isImmediate()) { O << (int64_t)MI->getOperand(OpNo).getImmedValue(); } else { // this is a constant pool reference: FIXME: assert this printOp(MI->getOperand(OpNo)); } } void printGlobalOperand(const MachineInstr *MI, unsigned OpNo) { printOp(MI->getOperand(OpNo), false); // this is NOT a br.call instruction } void printCallOperand(const MachineInstr *MI, unsigned OpNo) { printOp(MI->getOperand(OpNo), true); // this is a br.call instruction } void printMachineInstruction(const MachineInstr *MI); void printOp(const MachineOperand &MO, bool isBRCALLinsn= false); bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); }; } // end of anonymous namespace // Include the auto-generated portion of the assembly writer. #include "IA64GenAsmWriter.inc" /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool IA64AsmPrinter::runOnMachineFunction(MachineFunction &MF) { SetupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // Print out labels for the function. SwitchToTextSection("\n\t.section .text, \"ax\", \"progbits\"\n", MF.getFunction()); // ^^ means "Allocated instruXions in mem, initialized" EmitAlignment(5); O << "\t.global\t" << CurrentFnName << "\n"; O << "\t.type\t" << CurrentFnName << ", @function\n"; O << CurrentFnName << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block if there are any predecessors. if (I->pred_begin() != I->pred_end()) { printBasicBlockLabel(I, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printMachineInstruction(II); } } // We didn't modify anything. return false; } void IA64AsmPrinter::printOp(const MachineOperand &MO, bool isBRCALLinsn /* = false */) { const MRegisterInfo &RI = *TM.getRegisterInfo(); switch (MO.getType()) { case MachineOperand::MO_Register: O << RI.get(MO.getReg()).Name; return; case MachineOperand::MO_Immediate: O << MO.getImmedValue(); return; case MachineOperand::MO_MachineBasicBlock: printBasicBlockLabel(MO.getMachineBasicBlock()); return; case MachineOperand::MO_ConstantPoolIndex: { O << "@gprel(" << PrivateGlobalPrefix << "CPI" << getFunctionNumber() << "_" << MO.getConstantPoolIndex() << ")"; return; } case MachineOperand::MO_GlobalAddress: { // functions need @ltoff(@fptr(fn_name)) form GlobalValue *GV = MO.getGlobal(); Function *F = dyn_cast(GV); bool Needfptr=false; // if we're computing an address @ltoff(X), do // we need to decorate it so it becomes // @ltoff(@fptr(X)) ? if (F && !isBRCALLinsn /*&& F->isExternal()*/) Needfptr=true; // if this is the target of a call instruction, we should define // the function somewhere (GNU gas has no problem without this, but // Intel ias rightly complains of an 'undefined symbol') if (F /*&& isBRCALLinsn*/ && F->isExternal()) ExternalFunctionNames.insert(Mang->getValueName(MO.getGlobal())); else if (GV->isExternal()) // e.g. stuff like 'stdin' ExternalObjectNames.insert(Mang->getValueName(MO.getGlobal())); if (!isBRCALLinsn) O << "@ltoff("; if (Needfptr) O << "@fptr("; O << Mang->getValueName(MO.getGlobal()); if (Needfptr && !isBRCALLinsn) O << "#))"; // close both fptr( and ltoff( else { if (Needfptr) O << "#)"; // close only fptr( if (!isBRCALLinsn) O << "#)"; // close only ltoff( } int Offset = MO.getOffset(); if (Offset > 0) O << " + " << Offset; else if (Offset < 0) O << " - " << -Offset; return; } case MachineOperand::MO_ExternalSymbol: O << MO.getSymbolName(); ExternalFunctionNames.insert(MO.getSymbolName()); return; default: O << ""; return; } } /// printMachineInstruction -- Print out a single IA64 LLVM instruction /// MI to the current output stream. /// void IA64AsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; // Call the autogenerated instruction printer routines. printInstruction(MI); } bool IA64AsmPrinter::doInitialization(Module &M) { AsmPrinter::doInitialization(M); O << "\n.ident \"LLVM-ia64\"\n\n" << "\t.psr lsb\n" // should be "msb" on HP-UX, for starters << "\t.radix C\n" << "\t.psr abi64\n"; // we only support 64 bits for now return false; } bool IA64AsmPrinter::doFinalization(Module &M) { const TargetData *TD = TM.getTargetData(); // Print out module-level global variables here. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) if (I->hasInitializer()) { // External global require no code // Check to see if this is a special global used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(I)) continue; O << "\n\n"; std::string name = Mang->getValueName(I); Constant *C = I->getInitializer(); unsigned Size = TD->getTypeSize(C->getType()); unsigned Align = TD->getTypeAlignmentShift(C->getType()); if (C->isNullValue() && (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || I->hasWeakLinkage() /* FIXME: Verify correct */)) { SwitchToDataSection(".data", I); if (I->hasInternalLinkage()) { O << "\t.lcomm " << name << "#," << TD->getTypeSize(C->getType()) << "," << (1 << Align); O << "\t\t// "; } else { O << "\t.common " << name << "#," << TD->getTypeSize(C->getType()) << "," << (1 << Align); O << "\t\t// "; } WriteAsOperand(O, I, true, true, &M); O << "\n"; } else { switch (I->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. // Nonnull linkonce -> weak O << "\t.weak " << name << "\n"; O << "\t.section\t.llvm.linkonce.d." << name << ", \"aw\", \"progbits\"\n"; SwitchToDataSection("", I); break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.global " << name << "\n"; // FALL THROUGH case GlobalValue::InternalLinkage: SwitchToDataSection(C->isNullValue() ? ".bss" : ".data", I); break; case GlobalValue::GhostLinkage: std::cerr << "GhostLinkage cannot appear in IA64AsmPrinter!\n"; abort(); } EmitAlignment(Align); O << "\t.type " << name << ",@object\n"; O << "\t.size " << name << "," << Size << "\n"; O << name << ":\t\t\t\t// "; WriteAsOperand(O, I, true, true, &M); O << " = "; WriteAsOperand(O, C, false, false, &M); O << "\n"; EmitGlobalConstant(C); } } // we print out ".global X \n .type X, @function" for each external function O << "\n\n// br.call targets referenced (and not defined) above: \n"; for (std::set::iterator i = ExternalFunctionNames.begin(), e = ExternalFunctionNames.end(); i!=e; ++i) { O << "\t.global " << *i << "\n\t.type " << *i << ", @function\n"; } O << "\n\n"; // we print out ".global X \n .type X, @object" for each external object O << "\n\n// (external) symbols referenced (and not defined) above: \n"; for (std::set::iterator i = ExternalObjectNames.begin(), e = ExternalObjectNames.end(); i!=e; ++i) { O << "\t.global " << *i << "\n\t.type " << *i << ", @object\n"; } O << "\n\n"; AsmPrinter::doFinalization(M); return false; // success } /// createIA64CodePrinterPass - Returns a pass that prints the IA64 /// assembly code for a MachineFunction to the given output stream, using /// the given target machine description. /// FunctionPass *llvm::createIA64CodePrinterPass(std::ostream &o, IA64TargetMachine &tm) { return new IA64AsmPrinter(o, tm); }