//==- DominatorCalculation.h - Dominator Calculation -------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file was developed by Owen Anderson and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_VMCORE_DOMINATOR_CALCULATION_H #define LLVM_VMCORE_DOMINATOR_CALCULATION_H #include "llvm/Analysis/Dominators.h" //===----------------------------------------------------------------------===// // // DominatorTree construction - This pass constructs immediate dominator // information for a flow-graph based on the algorithm described in this // document: // // A Fast Algorithm for Finding Dominators in a Flowgraph // T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. // // This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and // LINK, but it turns out that the theoretically slower O(n*log(n)) // implementation is actually faster than the "efficient" algorithm (even for // large CFGs) because the constant overheads are substantially smaller. The // lower-complexity version can be enabled with the following #define: // #define BALANCE_IDOM_TREE 0 // //===----------------------------------------------------------------------===// namespace llvm { void DTcalculate(DominatorTree& DT, Function &F) { BasicBlock* Root = DT.Roots[0]; // Add a node for the root... DT.DomTreeNodes[Root] = DT.RootNode = new DomTreeNode(Root, 0); DT.Vertex.push_back(0); // Step #1: Number blocks in depth-first order and initialize variables used // in later stages of the algorithm. unsigned N = DT.DFSPass(Root, 0); for (unsigned i = N; i >= 2; --i) { BasicBlock *W = DT.Vertex[i]; DominatorTree::InfoRec &WInfo = DT.Info[W]; // Step #2: Calculate the semidominators of all vertices for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI) if (DT.Info.count(*PI)) { // Only if this predecessor is reachable! unsigned SemiU = DT.Info[Eval(DT, *PI)].Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } DT.Info[DT.Vertex[WInfo.Semi]].Bucket.push_back(W); BasicBlock *WParent = WInfo.Parent; Link(DT, WParent, W, WInfo); // Step #3: Implicitly define the immediate dominator of vertices std::vector &WParentBucket = DT.Info[WParent].Bucket; while (!WParentBucket.empty()) { BasicBlock *V = WParentBucket.back(); WParentBucket.pop_back(); BasicBlock *U = Eval(DT, V); DT.IDoms[V] = DT.Info[U].Semi < DT.Info[V].Semi ? U : WParent; } } // Step #4: Explicitly define the immediate dominator of each vertex for (unsigned i = 2; i <= N; ++i) { BasicBlock *W = DT.Vertex[i]; BasicBlock *&WIDom = DT.IDoms[W]; if (WIDom != DT.Vertex[DT.Info[W].Semi]) WIDom = DT.IDoms[WIDom]; } // Loop over all of the reachable blocks in the function... for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) if (BasicBlock *ImmDom = DT.getIDom(I)) { // Reachable block. DomTreeNode *BBNode = DT.DomTreeNodes[I]; if (BBNode) continue; // Haven't calculated this node yet? // Get or calculate the node for the immediate dominator DomTreeNode *IDomNode = DT.getNodeForBlock(ImmDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode DomTreeNode *C = new DomTreeNode(I, IDomNode); DT.DomTreeNodes[I] = IDomNode->addChild(C); } // Free temporary memory used to construct idom's DT.Info.clear(); DT.IDoms.clear(); std::vector().swap(DT.Vertex); DT.updateDFSNumbers(); } } #endif