//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the LoopInfo class that is used to identify natural loops // and determine the loop depth of various nodes of the CFG. Note that the // loops identified may actually be several natural loops that share the same // header node... not just a single natural loop. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopInfo.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Streams.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include using namespace llvm; char LoopInfo::ID = 0; static RegisterPass X("loops", "Natural Loop Information", true, true); //===----------------------------------------------------------------------===// // Loop implementation // /// isLoopInvariant - Return true if the specified value is loop invariant /// bool Loop::isLoopInvariant(Value *V) const { if (Instruction *I = dyn_cast(V)) return isLoopInvariant(I); return true; // All non-instructions are loop invariant } /// isLoopInvariant - Return true if the specified instruction is /// loop-invariant. /// bool Loop::isLoopInvariant(Instruction *I) const { return !contains(I->getParent()); } /// makeLoopInvariant - If the given value is an instruciton inside of the /// loop and it can be hoisted, do so to make it trivially loop-invariant. /// Return true if the value after any hoisting is loop invariant. This /// function can be used as a slightly more aggressive replacement for /// isLoopInvariant. /// /// If InsertPt is specified, it is the point to hoist instructions to. /// If null, the terminator of the loop preheader is used. /// bool Loop::makeLoopInvariant(Value *V, Instruction *InsertPt) const { if (Instruction *I = dyn_cast(V)) return makeLoopInvariant(I); return true; // All non-instructions are loop-invariant. } /// makeLoopInvariant - If the given instruction is inside of the /// loop and it can be hoisted, do so to make it trivially loop-invariant. /// Return true if the instruction after any hoisting is loop invariant. This /// function can be used as a slightly more aggressive replacement for /// isLoopInvariant. /// /// If InsertPt is specified, it is the point to hoist instructions to. /// If null, the terminator of the loop preheader is used. /// bool Loop::makeLoopInvariant(Instruction *I, Instruction *InsertPt) const { // Test if the value is already loop-invariant. if (isLoopInvariant(I)) return true; // Don't hoist instructions with side-effects. if (I->isTrapping()) return false; // Don't hoist PHI nodes. if (isa(I)) return false; // Don't hoist allocation instructions. if (isa(I)) return false; // Determine the insertion point, unless one was given. if (!InsertPt) { BasicBlock *Preheader = getLoopPreheader(); // Without a preheader, hoisting is not feasible. if (!Preheader) return false; InsertPt = Preheader->getTerminator(); } // Don't hoist instructions with loop-variant operands. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (!makeLoopInvariant(I->getOperand(i), InsertPt)) return false; // Hoist. I->moveBefore(InsertPt); return true; } /// getCanonicalInductionVariable - Check to see if the loop has a canonical /// induction variable: an integer recurrence that starts at 0 and increments /// by one each time through the loop. If so, return the phi node that /// corresponds to it. /// /// The IndVarSimplify pass transforms loops to have a canonical induction /// variable. /// PHINode *Loop::getCanonicalInductionVariable() const { BasicBlock *H = getHeader(); BasicBlock *Incoming = 0, *Backedge = 0; typedef GraphTraits > InvBlockTraits; InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H); assert(PI != InvBlockTraits::child_end(H) && "Loop must have at least one backedge!"); Backedge = *PI++; if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop Incoming = *PI++; if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges? if (contains(Incoming)) { if (contains(Backedge)) return 0; std::swap(Incoming, Backedge); } else if (!contains(Backedge)) return 0; // Loop over all of the PHI nodes, looking for a canonical indvar. for (BasicBlock::iterator I = H->begin(); isa(I); ++I) { PHINode *PN = cast(I); if (ConstantInt *CI = dyn_cast(PN->getIncomingValueForBlock(Incoming))) if (CI->isNullValue()) if (Instruction *Inc = dyn_cast(PN->getIncomingValueForBlock(Backedge))) if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) if (ConstantInt *CI = dyn_cast(Inc->getOperand(1))) if (CI->equalsInt(1)) return PN; } return 0; } /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds /// the canonical induction variable value for the "next" iteration of the /// loop. This always succeeds if getCanonicalInductionVariable succeeds. /// Instruction *Loop::getCanonicalInductionVariableIncrement() const { if (PHINode *PN = getCanonicalInductionVariable()) { bool P1InLoop = contains(PN->getIncomingBlock(1)); return cast(PN->getIncomingValue(P1InLoop)); } return 0; } /// getTripCount - Return a loop-invariant LLVM value indicating the number of /// times the loop will be executed. Note that this means that the backedge /// of the loop executes N-1 times. If the trip-count cannot be determined, /// this returns null. /// /// The IndVarSimplify pass transforms loops to have a form that this /// function easily understands. /// Value *Loop::getTripCount() const { // Canonical loops will end with a 'cmp ne I, V', where I is the incremented // canonical induction variable and V is the trip count of the loop. Instruction *Inc = getCanonicalInductionVariableIncrement(); if (Inc == 0) return 0; PHINode *IV = cast(Inc->getOperand(0)); BasicBlock *BackedgeBlock = IV->getIncomingBlock(contains(IV->getIncomingBlock(1))); if (BranchInst *BI = dyn_cast(BackedgeBlock->getTerminator())) if (BI->isConditional()) { if (ICmpInst *ICI = dyn_cast(BI->getCondition())) { if (ICI->getOperand(0) == Inc) { if (BI->getSuccessor(0) == getHeader()) { if (ICI->getPredicate() == ICmpInst::ICMP_NE) return ICI->getOperand(1); } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) { return ICI->getOperand(1); } } } } return 0; } /// getSmallConstantTripCount - Returns the trip count of this loop as a /// normal unsigned value, if possible. Returns 0 if the trip count is unknown /// of not constant. Will also return 0 if the trip count is very large /// (>= 2^32) unsigned Loop::getSmallConstantTripCount() const { Value* TripCount = this->getTripCount(); if (TripCount) { if (ConstantInt *TripCountC = dyn_cast(TripCount)) { // Guard against huge trip counts. if (TripCountC->getValue().getActiveBits() <= 32) { return (unsigned)TripCountC->getZExtValue(); } } } return 0; } /// getSmallConstantTripMultiple - Returns the largest constant divisor of the /// trip count of this loop as a normal unsigned value, if possible. This /// means that the actual trip count is always a multiple of the returned /// value (don't forget the trip count could very well be zero as well!). /// /// Returns 1 if the trip count is unknown or not guaranteed to be the /// multiple of a constant (which is also the case if the trip count is simply /// constant, use getSmallConstantTripCount for that case), Will also return 1 /// if the trip count is very large (>= 2^32). unsigned Loop::getSmallConstantTripMultiple() const { Value* TripCount = this->getTripCount(); // This will hold the ConstantInt result, if any ConstantInt *Result = NULL; if (TripCount) { // See if the trip count is constant itself Result = dyn_cast(TripCount); // if not, see if it is a multiplication if (!Result) if (BinaryOperator *BO = dyn_cast(TripCount)) { switch (BO->getOpcode()) { case BinaryOperator::Mul: Result = dyn_cast(BO->getOperand(1)); break; default: break; } } } // Guard against huge trip counts. if (Result && Result->getValue().getActiveBits() <= 32) { return (unsigned)Result->getZExtValue(); } else { return 1; } } /// isLCSSAForm - Return true if the Loop is in LCSSA form bool Loop::isLCSSAForm() const { // Sort the blocks vector so that we can use binary search to do quick // lookups. SmallPtrSet LoopBBs(block_begin(), block_end()); for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { BasicBlock *BB = *BI; for (BasicBlock ::iterator I = BB->begin(), E = BB->end(); I != E;++I) for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { BasicBlock *UserBB = cast(*UI)->getParent(); if (PHINode *P = dyn_cast(*UI)) { UserBB = P->getIncomingBlock(UI); } // Check the current block, as a fast-path. Most values are used in // the same block they are defined in. if (UserBB != BB && !LoopBBs.count(UserBB)) return false; } } return true; } //===----------------------------------------------------------------------===// // LoopInfo implementation // bool LoopInfo::runOnFunction(Function &) { releaseMemory(); LI.Calculate(getAnalysis().getBase()); // Update return false; } void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); }