//===-- Support/TarjanSCCIterator.h - Tarjan SCC iterator -------*- C++ -*-===// // // This builds on the Support/GraphTraits.h file to find the strongly // connected components (SCCs) of a graph in O(N+E) time using // Tarjan's DFS algorithm. // // The SCC iterator has the important property that if a node in SCC S1 // has an edge to a node in SCC S2, then it visits S1 *after* S2. // // To visit S1 *before* S2, use the TarjanSCCIterator on the Inverse graph. // (NOTE: This requires some simple wrappers and is not supported yet.) // //===----------------------------------------------------------------------===// #ifndef SUPPORT_TARJANSCCITERATOR_H #define SUPPORT_TARJANSCCITERATOR_H #include "Support/GraphTraits.h" #include "Support/Statistic.h" #include "Support/iterator" #include #include #include #include //-------------------------------------------------------------------------- // class SCC : A simple representation of an SCC in a generic Graph. //-------------------------------------------------------------------------- template > struct SCC: public std::vector { typedef typename GT::NodeType NodeType; typedef typename GT::ChildIteratorType ChildItTy; typedef std::vector super; typedef typename super::iterator iterator; typedef typename super::const_iterator const_iterator; typedef typename super::reverse_iterator reverse_iterator; typedef typename super::const_reverse_iterator const_reverse_iterator; // HasLoop() -- Test if this SCC has a loop. If it has more than one // node, this is trivially true. If not, it may still contain a loop // if the node has an edge back to itself. bool HasLoop() const { if (size() > 1) return true; NodeType* N = front(); for (ChildItTy CI=GT::child_begin(N), CE=GT::child_end(N); CI != CE; ++CI) if (*CI == N) return true; return false; } }; //-------------------------------------------------------------------------- // class TarjanSCC_iterator: Enumerate the SCCs of a directed graph, in // reverse topological order of the SCC DAG. //-------------------------------------------------------------------------- namespace { Statistic<> NumSCCs("NumSCCs", "Number of Strongly Connected Components"); Statistic<> MaxSCCSize("MaxSCCSize", "Size of largest Strongly Connected Component"); } template > class TarjanSCC_iterator : public forward_iterator, ptrdiff_t> { typedef SCC SccTy; typedef forward_iterator super; typedef typename super::reference reference; typedef typename super::pointer pointer; typedef typename GT::NodeType NodeType; typedef typename GT::ChildIteratorType ChildItTy; // The visit counters used to detect when a complete SCC is on the stack. // visitNum is the global counter. // nodeVisitNumbers are per-node visit numbers, also used as DFS flags. unsigned long visitNum; std::map nodeVisitNumbers; // SCCNodeStack - Stack holding nodes of the SCC. std::stack SCCNodeStack; // CurrentSCC - The current SCC, retrieved using operator*(). SccTy CurrentSCC; // VisitStack - Used to maintain the ordering. Top = current block // First element is basic block pointer, second is the 'next child' to visit std::stack > VisitStack; // MinVistNumStack - Stack holding the "min" values for each node in the DFS. // This is used to track the minimum uplink values for all children of // the corresponding node on the VisitStack. std::stack MinVisitNumStack; // A single "visit" within the non-recursive DFS traversal. void DFSVisitOne(NodeType* N) { ++visitNum; // Global counter for the visit order nodeVisitNumbers[N] = visitNum; SCCNodeStack.push(N); MinVisitNumStack.push(visitNum); VisitStack.push(make_pair(N, GT::child_begin(N))); DEBUG(std::cerr << "TarjanSCC: Node " << N << " : visitNum = " << visitNum << "\n"); } // The stack-based DFS traversal; defined below. void DFSVisitChildren() { assert(!VisitStack.empty()); while (VisitStack.top().second != GT::child_end(VisitStack.top().first)) { // TOS has at least one more child so continue DFS NodeType *childN = *VisitStack.top().second++; if (nodeVisitNumbers.find(childN) == nodeVisitNumbers.end()) { // this node has never been seen DFSVisitOne(childN); } else { unsigned long childNum = nodeVisitNumbers[childN]; if (MinVisitNumStack.top() > childNum) MinVisitNumStack.top() = childNum; } } } // Compute the next SCC using the DFS traversal. void GetNextSCC() { assert(VisitStack.size() == MinVisitNumStack.size()); CurrentSCC.clear(); // Prepare to compute the next SCC while (! VisitStack.empty()) { DFSVisitChildren(); assert(VisitStack.top().second==GT::child_end(VisitStack.top().first)); NodeType* visitingN = VisitStack.top().first; unsigned long minVisitNum = MinVisitNumStack.top(); VisitStack.pop(); MinVisitNumStack.pop(); if (! MinVisitNumStack.empty() && MinVisitNumStack.top() > minVisitNum) MinVisitNumStack.top() = minVisitNum; DEBUG(std::cerr << "TarjanSCC: Popped node " << visitingN << " : minVisitNum = " << minVisitNum << "; Node visit num = " << nodeVisitNumbers[visitingN] << "\n"); if (minVisitNum == nodeVisitNumbers[visitingN]) { // A full SCC is on the SCCNodeStack! It includes all nodes below // visitingN on the stack. Copy those nodes to CurrentSCC, // reset their minVisit values, and return (this suspends // the DFS traversal till the next ++). do { CurrentSCC.push_back(SCCNodeStack.top()); SCCNodeStack.pop(); nodeVisitNumbers[CurrentSCC.back()] = ~0UL; } while (CurrentSCC.back() != visitingN); ++NumSCCs; if (CurrentSCC.size() > MaxSCCSize) MaxSCCSize = CurrentSCC.size(); return; } } } inline TarjanSCC_iterator(NodeType *entryN) : visitNum(0) { DFSVisitOne(entryN); GetNextSCC(); } inline TarjanSCC_iterator() { /* End is when DFS stack is empty */ } public: typedef TarjanSCC_iterator _Self; // Provide static "constructors"... static inline _Self begin(GraphT& G) { return _Self(GT::getEntryNode(G)); } static inline _Self end (GraphT& G) { return _Self(); } // Direct loop termination test (I.fini() is more efficient than I == end()) inline bool fini() const { assert(!CurrentSCC.empty() || VisitStack.empty()); return CurrentSCC.empty(); } inline bool operator==(const _Self& x) const { return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC; } inline bool operator!=(const _Self& x) const { return !operator==(x); } // Iterator traversal: forward iteration only inline _Self& operator++() { // Preincrement GetNextSCC(); return *this; } inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } // Retrieve a pointer to the current SCC. Returns NULL when done. inline const SccTy* operator*() const { assert(!CurrentSCC.empty() || VisitStack.empty()); return CurrentSCC.empty()? NULL : &CurrentSCC; } inline SccTy* operator*() { assert(!CurrentSCC.empty() || VisitStack.empty()); return CurrentSCC.empty()? NULL : &CurrentSCC; } }; // Global constructor for the Tarjan SCC iterator. Use *I == NULL or I.fini() // to test termination efficiently, instead of I == the "end" iterator. template TarjanSCC_iterator tarj_begin(T G) { return TarjanSCC_iterator::begin(G); } template TarjanSCC_iterator tarj_end(T G) { return TarjanSCC_iterator::end(G); } //===----------------------------------------------------------------------===// #endif