//===-- AMDGPUInstrInfo.cpp - Base class for AMD GPU InstrInfo ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Implementation of the TargetInstrInfo class that is common to all /// AMD GPUs. // //===----------------------------------------------------------------------===// #include "AMDGPUInstrInfo.h" #include "AMDGPURegisterInfo.h" #include "AMDGPUTargetMachine.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #define GET_INSTRINFO_CTOR #define GET_INSTRINFO_NAMED_OPS #define GET_INSTRMAP_INFO #include "AMDGPUGenInstrInfo.inc" using namespace llvm; AMDGPUInstrInfo::AMDGPUInstrInfo(TargetMachine &tm) : AMDGPUGenInstrInfo(-1,-1), RI(tm), TM(tm) { } const AMDGPURegisterInfo &AMDGPUInstrInfo::getRegisterInfo() const { return RI; } bool AMDGPUInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const { // TODO: Implement this function return false; } unsigned AMDGPUInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { // TODO: Implement this function return 0; } unsigned AMDGPUInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const { // TODO: Implement this function return 0; } bool AMDGPUInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, const MachineMemOperand *&MMO, int &FrameIndex) const { // TODO: Implement this function return false; } unsigned AMDGPUInstrInfo::isStoreFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { // TODO: Implement this function return 0; } unsigned AMDGPUInstrInfo::isStoreFromStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const { // TODO: Implement this function return 0; } bool AMDGPUInstrInfo::hasStoreFromStackSlot(const MachineInstr *MI, const MachineMemOperand *&MMO, int &FrameIndex) const { // TODO: Implement this function return false; } MachineInstr * AMDGPUInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { // TODO: Implement this function return NULL; } bool AMDGPUInstrInfo::getNextBranchInstr(MachineBasicBlock::iterator &iter, MachineBasicBlock &MBB) const { while (iter != MBB.end()) { switch (iter->getOpcode()) { default: break; case AMDGPU::BRANCH_COND_i32: case AMDGPU::BRANCH_COND_f32: case AMDGPU::BRANCH: return true; }; ++iter; } return false; } void AMDGPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { assert(!"Not Implemented"); } void AMDGPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { assert(!"Not Implemented"); } bool AMDGPUInstrInfo::expandPostRAPseudo (MachineBasicBlock::iterator MI) const { MachineBasicBlock *MBB = MI->getParent(); if (isRegisterLoad(*MI)) { unsigned RegIndex = MI->getOperand(2).getImm(); unsigned Channel = MI->getOperand(3).getImm(); unsigned Address = calculateIndirectAddress(RegIndex, Channel); unsigned OffsetReg = MI->getOperand(1).getReg(); if (OffsetReg == AMDGPU::INDIRECT_BASE_ADDR) { buildMovInstr(MBB, MI, MI->getOperand(0).getReg(), getIndirectAddrRegClass()->getRegister(Address)); } else { buildIndirectRead(MBB, MI, MI->getOperand(0).getReg(), Address, OffsetReg); } } else if (isRegisterStore(*MI)) { unsigned RegIndex = MI->getOperand(2).getImm(); unsigned Channel = MI->getOperand(3).getImm(); unsigned Address = calculateIndirectAddress(RegIndex, Channel); unsigned OffsetReg = MI->getOperand(1).getReg(); if (OffsetReg == AMDGPU::INDIRECT_BASE_ADDR) { buildMovInstr(MBB, MI, getIndirectAddrRegClass()->getRegister(Address), MI->getOperand(0).getReg()); } else { buildIndirectWrite(MBB, MI, MI->getOperand(0).getReg(), calculateIndirectAddress(RegIndex, Channel), OffsetReg); } } else { return false; } MBB->erase(MI); return true; } MachineInstr * AMDGPUInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl &Ops, int FrameIndex) const { // TODO: Implement this function return 0; } MachineInstr* AMDGPUInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl &Ops, MachineInstr *LoadMI) const { // TODO: Implement this function return 0; } bool AMDGPUInstrInfo::canFoldMemoryOperand(const MachineInstr *MI, const SmallVectorImpl &Ops) const { // TODO: Implement this function return false; } bool AMDGPUInstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl &NewMIs) const { // TODO: Implement this function return false; } bool AMDGPUInstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl &NewNodes) const { // TODO: Implement this function return false; } unsigned AMDGPUInstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex) const { // TODO: Implement this function return 0; } bool AMDGPUInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const { assert(Offset2 > Offset1 && "Second offset should be larger than first offset!"); // If we have less than 16 loads in a row, and the offsets are within 16, // then schedule together. // TODO: Make the loads schedule near if it fits in a cacheline return (NumLoads < 16 && (Offset2 - Offset1) < 16); } bool AMDGPUInstrInfo::ReverseBranchCondition(SmallVectorImpl &Cond) const { // TODO: Implement this function return true; } void AMDGPUInstrInfo::insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { // TODO: Implement this function } bool AMDGPUInstrInfo::isPredicated(const MachineInstr *MI) const { // TODO: Implement this function return false; } bool AMDGPUInstrInfo::SubsumesPredicate(const SmallVectorImpl &Pred1, const SmallVectorImpl &Pred2) const { // TODO: Implement this function return false; } bool AMDGPUInstrInfo::DefinesPredicate(MachineInstr *MI, std::vector &Pred) const { // TODO: Implement this function return false; } bool AMDGPUInstrInfo::isPredicable(MachineInstr *MI) const { // TODO: Implement this function return MI->getDesc().isPredicable(); } bool AMDGPUInstrInfo::isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { // TODO: Implement this function return true; } bool AMDGPUInstrInfo::isRegisterStore(const MachineInstr &MI) const { return get(MI.getOpcode()).TSFlags & AMDGPU_FLAG_REGISTER_STORE; } bool AMDGPUInstrInfo::isRegisterLoad(const MachineInstr &MI) const { return get(MI.getOpcode()).TSFlags & AMDGPU_FLAG_REGISTER_LOAD; } void AMDGPUInstrInfo::convertToISA(MachineInstr & MI, MachineFunction &MF, DebugLoc DL) const { MachineRegisterInfo &MRI = MF.getRegInfo(); const AMDGPURegisterInfo & RI = getRegisterInfo(); for (unsigned i = 0; i < MI.getNumOperands(); i++) { MachineOperand &MO = MI.getOperand(i); // Convert dst regclass to one that is supported by the ISA if (MO.isReg() && MO.isDef()) { if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { const TargetRegisterClass * oldRegClass = MRI.getRegClass(MO.getReg()); const TargetRegisterClass * newRegClass = RI.getISARegClass(oldRegClass); assert(newRegClass); MRI.setRegClass(MO.getReg(), newRegClass); } } } } int AMDGPUInstrInfo::getMaskedMIMGOp(uint16_t Opcode, unsigned Channels) const { switch (Channels) { default: return Opcode; case 1: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_1); case 2: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_2); case 3: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_3); } }