; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s ; RUN: grep fa %t1.s | count 2 && ; RUN: grep fs %t1.s | count 2 && ; RUN: grep fm %t1.s | count 6 && ; RUN: grep fma %t1.s | count 2 && ; RUN: grep fms %t1.s | count 2 && ; RUN: grep fnms %t1.s | count 3 ; ; This file includes standard floating point arithmetic instructions ; NOTE fdiv is tested separately since it is a compound operation target datalayout = "E-p:32:32:128-f64:64:128-f32:32:128-i64:32:128-i32:32:128-i16:16:128-i8:8:128-i1:8:128-a0:0:128-v128:128:128-s0:128:128" target triple = "spu" define float @fp_add(float %arg1, float %arg2) { %A = add float %arg1, %arg2 ; [#uses=1] ret float %A } define <4 x float> @fp_add_vec(<4 x float> %arg1, <4 x float> %arg2) { %A = add <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1] ret <4 x float> %A } define float @fp_sub(float %arg1, float %arg2) { %A = sub float %arg1, %arg2 ; [#uses=1] ret float %A } define <4 x float> @fp_sub_vec(<4 x float> %arg1, <4 x float> %arg2) { %A = sub <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1] ret <4 x float> %A } define float @fp_mul(float %arg1, float %arg2) { %A = mul float %arg1, %arg2 ; [#uses=1] ret float %A } define <4 x float> @fp_mul_vec(<4 x float> %arg1, <4 x float> %arg2) { %A = mul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1] ret <4 x float> %A } define float @fp_mul_add(float %arg1, float %arg2, float %arg3) { %A = mul float %arg1, %arg2 ; [#uses=1] %B = add float %A, %arg3 ; [#uses=1] ret float %B } define <4 x float> @fp_mul_add_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) { %A = mul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1] %B = add <4 x float> %A, %arg3 ; <<4 x float>> [#uses=1] ret <4 x float> %B } define float @fp_mul_sub(float %arg1, float %arg2, float %arg3) { %A = mul float %arg1, %arg2 ; [#uses=1] %B = sub float %A, %arg3 ; [#uses=1] ret float %B } define <4 x float> @fp_mul_sub_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) { %A = mul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1] %B = sub <4 x float> %A, %arg3 ; <<4 x float>> [#uses=1] ret <4 x float> %B } ; Test the straightforward way of getting fnms ; c - a * b define float @fp_neg_mul_sub_1(float %arg1, float %arg2, float %arg3) { %A = mul float %arg1, %arg2 %B = sub float %arg3, %A ret float %B } ; Test another way of getting fnms ; - ( a *b -c ) = c - a * b define float @fp_neg_mul_sub_2(float %arg1, float %arg2, float %arg3) { %A = mul float %arg1, %arg2 %B = sub float %A, %arg3 %C = sub float -0.0, %B ret float %C } define <4 x float> @fp_neg_mul_sub_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) { %A = mul <4 x float> %arg1, %arg2 %B = sub <4 x float> %A, %arg3 %D = sub <4 x float> < float -0.0, float -0.0, float -0.0, float -0.0 >, %B ret <4 x float> %D }