//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declaration of the MachineInstr class, which is the // basic representation for all target dependent machine instructions used by // the back end. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEINSTR_H #define LLVM_CODEGEN_MACHINEINSTR_H #include "llvm/Target/MRegisterInfo.h" #include "Support/Annotation.h" #include "Support/iterator" namespace llvm { class Value; class Function; class MachineBasicBlock; class TargetMachine; class GlobalValue; typedef int MachineOpCode; //===----------------------------------------------------------------------===// /// Special flags on instructions that modify the opcode. /// These flags are unused for now, but having them enforces that some /// changes will be needed if they are used. /// enum MachineOpCodeFlags { AnnulFlag, /// 1 if annul bit is set on a branch PredTakenFlag, /// 1 if branch should be predicted taken PredNotTakenFlag /// 1 if branch should be predicted not taken }; //===----------------------------------------------------------------------===// /// MOTy - MachineOperandType - This namespace contains an enum that describes /// how the machine operand is used by the instruction: is it read, defined, or /// both? Note that the MachineInstr/Operator class currently uses bool /// arguments to represent this information instead of an enum. Eventually this /// should change over to use this _easier to read_ representation instead. /// namespace MOTy { enum UseType { Use, /// This machine operand is only read by the instruction Def, /// This machine operand is only written by the instruction UseAndDef /// This machine operand is read AND written }; } //===----------------------------------------------------------------------===// // class MachineOperand // // Purpose: // Representation of each machine instruction operand. // This class is designed so that you can allocate a vector of operands // first and initialize each one later. // // E.g, for this VM instruction: // ptr = alloca type, numElements // we generate 2 machine instructions on the SPARC: // // mul Constant, Numelements -> Reg // add %sp, Reg -> Ptr // // Each instruction has 3 operands, listed above. Of those: // - Reg, NumElements, and Ptr are of operand type MO_Register. // - Constant is of operand type MO_SignExtendedImmed on the SPARC. // // For the register operands, the virtual register type is as follows: // // - Reg will be of virtual register type MO_MInstrVirtualReg. The field // MachineInstr* minstr will point to the instruction that computes reg. // // - %sp will be of virtual register type MO_MachineReg. // The field regNum identifies the machine register. // // - NumElements will be of virtual register type MO_VirtualReg. // The field Value* value identifies the value. // // - Ptr will also be of virtual register type MO_VirtualReg. // Again, the field Value* value identifies the value. // //===----------------------------------------------------------------------===// struct MachineOperand { enum MachineOperandType { MO_VirtualRegister, // virtual register for *value MO_MachineRegister, // pre-assigned machine register `regNum' MO_CCRegister, MO_SignExtendedImmed, MO_UnextendedImmed, MO_PCRelativeDisp, MO_MachineBasicBlock, // MachineBasicBlock reference MO_FrameIndex, // Abstract Stack Frame Index MO_ConstantPoolIndex, // Address of indexed Constant in Constant Pool MO_ExternalSymbol, // Name of external global symbol MO_GlobalAddress, // Address of a global value }; private: // Bit fields of the flags variable used for different operand properties enum { DEFFLAG = 0x01, // this is a def of the operand USEFLAG = 0x02, // this is a use of the operand HIFLAG32 = 0x04, // operand is %hi32(value_or_immedVal) LOFLAG32 = 0x08, // operand is %lo32(value_or_immedVal) HIFLAG64 = 0x10, // operand is %hi64(value_or_immedVal) LOFLAG64 = 0x20, // operand is %lo64(value_or_immedVal) PCRELATIVE = 0x40, // Operand is relative to PC, not a global address }; private: union { Value* value; // BasicBlockVal for a label operand. // ConstantVal for a non-address immediate. // Virtual register for an SSA operand, // including hidden operands required for // the generated machine code. // LLVM global for MO_GlobalAddress. int64_t immedVal; // Constant value for an explicit constant MachineBasicBlock *MBB; // For MO_MachineBasicBlock type std::string *SymbolName; // For MO_ExternalSymbol type }; char flags; // see bit field definitions above MachineOperandType opType:8; // Pack into 8 bits efficiently after flags. int regNum; // register number for an explicit register // will be set for a value after reg allocation private: MachineOperand() : immedVal(0), flags(0), opType(MO_VirtualRegister), regNum(-1) {} MachineOperand(int64_t ImmVal, MachineOperandType OpTy) : immedVal(ImmVal), flags(0), opType(OpTy), regNum(-1) {} MachineOperand(int Reg, MachineOperandType OpTy, MOTy::UseType UseTy) : immedVal(0), opType(OpTy), regNum(Reg) { switch (UseTy) { case MOTy::Use: flags = USEFLAG; break; case MOTy::Def: flags = DEFFLAG; break; case MOTy::UseAndDef: flags = DEFFLAG | USEFLAG; break; default: assert(0 && "Invalid value for UseTy!"); } } MachineOperand(Value *V, MachineOperandType OpTy, MOTy::UseType UseTy, bool isPCRelative = false) : value(V), opType(OpTy), regNum(-1) { switch (UseTy) { case MOTy::Use: flags = USEFLAG; break; case MOTy::Def: flags = DEFFLAG; break; case MOTy::UseAndDef: flags = DEFFLAG | USEFLAG; break; default: assert(0 && "Invalid value for UseTy!"); } if (isPCRelative) flags |= PCRELATIVE; } MachineOperand(MachineBasicBlock *mbb) : MBB(mbb), flags(0), opType(MO_MachineBasicBlock), regNum(-1) {} MachineOperand(const std::string &SymName, bool isPCRelative) : SymbolName(new std::string(SymName)), flags(isPCRelative ? PCRELATIVE :0), opType(MO_ExternalSymbol), regNum(-1) {} public: MachineOperand(const MachineOperand &M) : immedVal(M.immedVal), flags(M.flags), opType(M.opType), regNum(M.regNum) { if (isExternalSymbol()) SymbolName = new std::string(M.getSymbolName()); } ~MachineOperand() { if (isExternalSymbol()) delete SymbolName; } const MachineOperand &operator=(const MachineOperand &MO) { if (isExternalSymbol()) // if old operand had a symbol name, delete SymbolName; // release old memory immedVal = MO.immedVal; flags = MO.flags; opType = MO.opType; regNum = MO.regNum; if (isExternalSymbol()) SymbolName = new std::string(MO.getSymbolName()); return *this; } // Accessor methods. Caller is responsible for checking the // operand type before invoking the corresponding accessor. // MachineOperandType getType() const { return opType; } /// isPCRelative - This returns the value of the PCRELATIVE flag, which /// indicates whether this operand should be emitted as a PC relative value /// instead of a global address. This is used for operands of the forms: /// MachineBasicBlock, GlobalAddress, ExternalSymbol /// bool isPCRelative() const { return (flags & PCRELATIVE) != 0; } // This is to finally stop caring whether we have a virtual or machine // register -- an easier interface is to simply call both virtual and machine // registers essentially the same, yet be able to distinguish when // necessary. Thus the instruction selector can just add registers without // abandon, and the register allocator won't be confused. bool isVirtualRegister() const { return (opType == MO_VirtualRegister || opType == MO_MachineRegister) && regNum >= MRegisterInfo::FirstVirtualRegister; } bool isRegister() const { return opType == MO_VirtualRegister || opType == MO_MachineRegister; } bool isMachineRegister() const { return !isVirtualRegister(); } bool isMachineBasicBlock() const { return opType == MO_MachineBasicBlock; } bool isPCRelativeDisp() const { return opType == MO_PCRelativeDisp; } bool isImmediate() const { return opType == MO_SignExtendedImmed || opType == MO_UnextendedImmed; } bool isFrameIndex() const { return opType == MO_FrameIndex; } bool isConstantPoolIndex() const { return opType == MO_ConstantPoolIndex; } bool isGlobalAddress() const { return opType == MO_GlobalAddress; } bool isExternalSymbol() const { return opType == MO_ExternalSymbol; } Value* getVRegValue() const { assert(opType == MO_VirtualRegister || opType == MO_CCRegister || isPCRelativeDisp()); return value; } Value* getVRegValueOrNull() const { return (opType == MO_VirtualRegister || opType == MO_CCRegister || isPCRelativeDisp()) ? value : NULL; } int getMachineRegNum() const { assert(opType == MO_MachineRegister); return regNum; } int64_t getImmedValue() const { assert(isImmediate()); return immedVal; } void setImmedValue(int64_t ImmVal) { assert(isImmediate()); immedVal=ImmVal; } MachineBasicBlock *getMachineBasicBlock() const { assert(isMachineBasicBlock() && "Can't get MBB in non-MBB operand!"); return MBB; } int getFrameIndex() const { assert(isFrameIndex()); return immedVal; } unsigned getConstantPoolIndex() const { assert(isConstantPoolIndex()); return immedVal; } GlobalValue *getGlobal() const { assert(isGlobalAddress()); return (GlobalValue*)value; } const std::string &getSymbolName() const { assert(isExternalSymbol()); return *SymbolName; } bool isUse () const { return flags & USEFLAG; } MachineOperand& setUse () { flags |= USEFLAG; return *this; } bool isDef () const { return flags & DEFFLAG; } MachineOperand& setDef () { flags |= DEFFLAG; return *this; } bool isHiBits32 () const { return flags & HIFLAG32; } bool isLoBits32 () const { return flags & LOFLAG32; } bool isHiBits64 () const { return flags & HIFLAG64; } bool isLoBits64 () const { return flags & LOFLAG64; } // used to check if a machine register has been allocated to this operand bool hasAllocatedReg() const { return (regNum >= 0 && (opType == MO_VirtualRegister || opType == MO_CCRegister || opType == MO_MachineRegister)); } // used to get the reg number if when one is allocated int getAllocatedRegNum() const { assert(hasAllocatedReg()); return regNum; } // ********** TODO: get rid of this duplicate code! *********** unsigned getReg() const { return getAllocatedRegNum(); } void setReg(unsigned Reg) { assert(hasAllocatedReg() && "This operand cannot have a register number!"); regNum = Reg; } friend std::ostream& operator<<(std::ostream& os, const MachineOperand& mop); private: // Construction methods needed for fine-grain control. // These must be accessed via coresponding methods in MachineInstr. void markHi32() { flags |= HIFLAG32; } void markLo32() { flags |= LOFLAG32; } void markHi64() { flags |= HIFLAG64; } void markLo64() { flags |= LOFLAG64; } // Replaces the Value with its corresponding physical register after // register allocation is complete void setRegForValue(int reg) { assert(opType == MO_VirtualRegister || opType == MO_CCRegister || opType == MO_MachineRegister); regNum = reg; } friend class MachineInstr; }; //===----------------------------------------------------------------------===// // class MachineInstr // // Purpose: // Representation of each machine instruction. // // MachineOpCode must be an enum, defined separately for each target. // E.g., It is defined in SparcInstructionSelection.h for the SPARC. // // There are 2 kinds of operands: // // (1) Explicit operands of the machine instruction in vector operands[] // // (2) "Implicit operands" are values implicitly used or defined by the // machine instruction, such as arguments to a CALL, return value of // a CALL (if any), and return value of a RETURN. //===----------------------------------------------------------------------===// class MachineInstr { int opCode; // the opcode unsigned opCodeFlags; // flags modifying instrn behavior std::vector operands; // the operands unsigned numImplicitRefs; // number of implicit operands // OperandComplete - Return true if it's illegal to add a new operand bool OperandsComplete() const; MachineInstr(const MachineInstr &); // DO NOT IMPLEMENT void operator=(const MachineInstr&); // DO NOT IMPLEMENT public: MachineInstr(int Opcode, unsigned numOperands); /// MachineInstr ctor - This constructor only does a _reserve_ of the /// operands, not a resize for them. It is expected that if you use this that /// you call add* methods below to fill up the operands, instead of the Set /// methods. Eventually, the "resizing" ctors will be phased out. /// MachineInstr(int Opcode, unsigned numOperands, bool XX, bool YY); /// MachineInstr ctor - Work exactly the same as the ctor above, except that /// the MachineInstr is created and added to the end of the specified basic /// block. /// MachineInstr(MachineBasicBlock *MBB, int Opcode, unsigned numOps); // The opcode. // const int getOpcode() const { return opCode; } const int getOpCode() const { return opCode; } // Opcode flags. // unsigned getOpCodeFlags() const { return opCodeFlags; } // // Access to explicit operands of the instruction // unsigned getNumOperands() const { return operands.size() - numImplicitRefs; } const MachineOperand& getOperand(unsigned i) const { assert(i < getNumOperands() && "getOperand() out of range!"); return operands[i]; } MachineOperand& getOperand(unsigned i) { assert(i < getNumOperands() && "getOperand() out of range!"); return operands[i]; } // // Access to explicit or implicit operands of the instruction // This returns the i'th entry in the operand vector. // That represents the i'th explicit operand or the (i-N)'th implicit operand, // depending on whether i < N or i >= N. // const MachineOperand& getExplOrImplOperand(unsigned i) const { assert(i < operands.size() && "getExplOrImplOperand() out of range!"); return (i < getNumOperands()? getOperand(i) : getImplicitOp(i - getNumOperands())); } // // Access to implicit operands of the instruction // unsigned getNumImplicitRefs() const{ return numImplicitRefs; } MachineOperand& getImplicitOp(unsigned i) { assert(i < numImplicitRefs && "implicit ref# out of range!"); return operands[i + operands.size() - numImplicitRefs]; } const MachineOperand& getImplicitOp(unsigned i) const { assert(i < numImplicitRefs && "implicit ref# out of range!"); return operands[i + operands.size() - numImplicitRefs]; } Value* getImplicitRef(unsigned i) { return getImplicitOp(i).getVRegValue(); } const Value* getImplicitRef(unsigned i) const { return getImplicitOp(i).getVRegValue(); } void addImplicitRef(Value* V, bool isDef = false, bool isDefAndUse = false) { ++numImplicitRefs; addRegOperand(V, isDef, isDefAndUse); } void setImplicitRef(unsigned i, Value* V) { assert(i < getNumImplicitRefs() && "setImplicitRef() out of range!"); SetMachineOperandVal(i + getNumOperands(), MachineOperand::MO_VirtualRegister, V); } // // Debugging support // void print(std::ostream &OS, const TargetMachine &TM) const; void dump() const; friend std::ostream& operator<<(std::ostream& os, const MachineInstr& minstr); // // Define iterators to access the Value operands of the Machine Instruction. // Note that these iterators only enumerate the explicit operands. // begin() and end() are defined to produce these iterators... // template class ValOpIterator; typedef ValOpIterator const_val_op_iterator; typedef ValOpIterator< MachineInstr*, Value*> val_op_iterator; //===--------------------------------------------------------------------===// // Accessors to add operands when building up machine instructions // /// addRegOperand - Add a MO_VirtualRegister operand to the end of the /// operands list... /// void addRegOperand(Value *V, bool isDef, bool isDefAndUse=false) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(V, MachineOperand::MO_VirtualRegister, !isDef ? MOTy::Use : (isDefAndUse ? MOTy::UseAndDef : MOTy::Def))); } void addRegOperand(Value *V, MOTy::UseType UTy = MOTy::Use, bool isPCRelative = false) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(V, MachineOperand::MO_VirtualRegister, UTy, isPCRelative)); } void addCCRegOperand(Value *V, MOTy::UseType UTy = MOTy::Use) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(V, MachineOperand::MO_CCRegister, UTy, false)); } /// addRegOperand - Add a symbolic virtual register reference... /// void addRegOperand(int reg, bool isDef) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(reg, MachineOperand::MO_VirtualRegister, isDef ? MOTy::Def : MOTy::Use)); } /// addRegOperand - Add a symbolic virtual register reference... /// void addRegOperand(int reg, MOTy::UseType UTy = MOTy::Use) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(reg, MachineOperand::MO_VirtualRegister, UTy)); } /// addPCDispOperand - Add a PC relative displacement operand to the MI /// void addPCDispOperand(Value *V) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(V, MachineOperand::MO_PCRelativeDisp, MOTy::Use)); } /// addMachineRegOperand - Add a virtual register operand to this MachineInstr /// void addMachineRegOperand(int reg, bool isDef) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(reg, MachineOperand::MO_MachineRegister, isDef ? MOTy::Def : MOTy::Use)); } /// addMachineRegOperand - Add a virtual register operand to this MachineInstr /// void addMachineRegOperand(int reg, MOTy::UseType UTy = MOTy::Use) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(reg, MachineOperand::MO_MachineRegister, UTy)); } /// addZeroExtImmOperand - Add a zero extended constant argument to the /// machine instruction. /// void addZeroExtImmOperand(int64_t intValue) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(intValue, MachineOperand::MO_UnextendedImmed)); } /// addSignExtImmOperand - Add a zero extended constant argument to the /// machine instruction. /// void addSignExtImmOperand(int64_t intValue) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(intValue, MachineOperand::MO_SignExtendedImmed)); } void addMachineBasicBlockOperand(MachineBasicBlock *MBB) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(MBB)); } /// addFrameIndexOperand - Add an abstract frame index to the instruction /// void addFrameIndexOperand(unsigned Idx) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(Idx, MachineOperand::MO_FrameIndex)); } /// addConstantPoolndexOperand - Add a constant pool object index to the /// instruction. /// void addConstantPoolIndexOperand(unsigned I) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand(I, MachineOperand::MO_ConstantPoolIndex)); } void addGlobalAddressOperand(GlobalValue *GV, bool isPCRelative) { assert(!OperandsComplete() && "Trying to add an operand to a machine instr that is already done!"); operands.push_back(MachineOperand((Value*)GV, MachineOperand::MO_GlobalAddress, MOTy::Use, isPCRelative)); } /// addExternalSymbolOperand - Add an external symbol operand to this instr /// void addExternalSymbolOperand(const std::string &SymName, bool isPCRelative) { operands.push_back(MachineOperand(SymName, isPCRelative)); } //===--------------------------------------------------------------------===// // Accessors used to modify instructions in place. // // FIXME: Move this stuff to MachineOperand itself! /// replace - Support to rewrite a machine instruction in place: for now, /// simply replace() and then set new operands with Set.*Operand methods /// below. /// void replace(int Opcode, unsigned numOperands); /// setOpcode - Replace the opcode of the current instruction with a new one. /// void setOpcode(unsigned Op) { opCode = Op; } /// RemoveOperand - Erase an operand from an instruction, leaving it with one /// fewer operand than it started with. /// void RemoveOperand(unsigned i) { operands.erase(operands.begin()+i); } // Access to set the operands when building the machine instruction // void SetMachineOperandVal (unsigned i, MachineOperand::MachineOperandType operandType, Value* V); void SetMachineOperandConst (unsigned i, MachineOperand::MachineOperandType operandType, int64_t intValue); void SetMachineOperandReg(unsigned i, int regNum); unsigned substituteValue(const Value* oldVal, Value* newVal, bool defsOnly, bool notDefsAndUses, bool& someArgsWereIgnored); void setOperandHi32(unsigned i) { operands[i].markHi32(); } void setOperandLo32(unsigned i) { operands[i].markLo32(); } void setOperandHi64(unsigned i) { operands[i].markHi64(); } void setOperandLo64(unsigned i) { operands[i].markLo64(); } // SetRegForOperand - // SetRegForImplicitRef - // Mark an explicit or implicit operand with its allocated physical register. // void SetRegForOperand(unsigned i, int regNum); void SetRegForImplicitRef(unsigned i, int regNum); // // Iterator to enumerate machine operands. // template class ValOpIterator : public forward_iterator { unsigned i; MITy MI; void skipToNextVal() { while (i < MI->getNumOperands() && !( (MI->getOperand(i).getType() == MachineOperand::MO_VirtualRegister || MI->getOperand(i).getType() == MachineOperand::MO_CCRegister) && MI->getOperand(i).getVRegValue() != 0)) ++i; } inline ValOpIterator(MITy mi, unsigned I) : i(I), MI(mi) { skipToNextVal(); } public: typedef ValOpIterator _Self; inline VTy operator*() const { return MI->getOperand(i).getVRegValue(); } const MachineOperand &getMachineOperand() const { return MI->getOperand(i);} MachineOperand &getMachineOperand() { return MI->getOperand(i);} inline VTy operator->() const { return operator*(); } inline bool isUse() const { return MI->getOperand(i).isUse(); } inline bool isDef() const { return MI->getOperand(i).isDef(); } inline _Self& operator++() { i++; skipToNextVal(); return *this; } inline _Self operator++(int) { _Self tmp = *this; ++*this; return tmp; } inline bool operator==(const _Self &y) const { return i == y.i; } inline bool operator!=(const _Self &y) const { return !operator==(y); } static _Self begin(MITy MI) { return _Self(MI, 0); } static _Self end(MITy MI) { return _Self(MI, MI->getNumOperands()); } }; // define begin() and end() val_op_iterator begin() { return val_op_iterator::begin(this); } val_op_iterator end() { return val_op_iterator::end(this); } const_val_op_iterator begin() const { return const_val_op_iterator::begin(this); } const_val_op_iterator end() const { return const_val_op_iterator::end(this); } }; //===----------------------------------------------------------------------===// // Debugging Support std::ostream& operator<<(std::ostream &OS, const MachineInstr &MI); std::ostream& operator<<(std::ostream &OS, const MachineOperand &MO); void PrintMachineInstructions(const Function *F); } // End llvm namespace #endif