//===-- Metadata.cpp - Implement Metadata classes -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Metadata classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Metadata.h" #include "LLVMContextImpl.h" #include "SymbolTableListTraitsImpl.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/LeakDetector.h" #include "llvm/IR/Module.h" #include "llvm/IR/ValueHandle.h" using namespace llvm; Metadata::Metadata(LLVMContext &Context, unsigned ID) : Value(Type::getMetadataTy(Context), ID) {} //===----------------------------------------------------------------------===// // MDString implementation. // void MDString::anchor() { } MDString *MDString::get(LLVMContext &Context, StringRef Str) { auto &Store = Context.pImpl->MDStringCache; auto I = Store.find(Str); if (I != Store.end()) return &I->second; auto *Entry = StringMapEntry::Create(Str, Store.getAllocator(), Context); bool WasInserted = Store.insert(Entry); (void)WasInserted; assert(WasInserted && "Expected entry to be inserted"); return &Entry->second; } StringRef MDString::getString() const { return StringMapEntry::GetStringMapEntryFromValue(*this).first(); } //===----------------------------------------------------------------------===// // MDNodeOperand implementation. // // Use CallbackVH to hold MDNode operands. namespace llvm { class MDNodeOperand : public CallbackVH { MDNode *getParent() { MDNodeOperand *Cur = this; while (Cur->getValPtrInt() != 1) ++Cur; assert(Cur->getValPtrInt() == 1 && "Couldn't find the end of the operand list!"); return reinterpret_cast(Cur + 1); } public: MDNodeOperand() {} virtual ~MDNodeOperand(); void set(Value *V) { unsigned IsLast = this->getValPtrInt(); this->setValPtr(V); this->setAsLastOperand(IsLast); } /// \brief Accessor method to mark the operand as the first in the list. void setAsLastOperand(unsigned I) { this->setValPtrInt(I); } void deleted() override; void allUsesReplacedWith(Value *NV) override; }; } // end namespace llvm. // Provide out-of-line definition to prevent weak vtable. MDNodeOperand::~MDNodeOperand() {} void MDNodeOperand::deleted() { getParent()->replaceOperand(this, nullptr); } void MDNodeOperand::allUsesReplacedWith(Value *NV) { getParent()->replaceOperand(this, NV); } //===----------------------------------------------------------------------===// // MDNode implementation. // /// \brief Get the MDNodeOperand's coallocated on the end of the MDNode. static MDNodeOperand *getOperandPtr(MDNode *N, unsigned Op) { // Use <= instead of < to permit a one-past-the-end address. assert(Op <= N->getNumOperands() && "Invalid operand number"); return reinterpret_cast(N) - N->getNumOperands() + Op; } void MDNode::replaceOperandWith(unsigned i, Value *Val) { MDNodeOperand *Op = getOperandPtr(this, i); replaceOperand(Op, Val); } void *MDNode::operator new(size_t Size, unsigned NumOps) { void *Ptr = ::operator new(Size + NumOps * sizeof(MDNodeOperand)); MDNodeOperand *Op = static_cast(Ptr); if (NumOps) { MDNodeOperand *Last = Op + NumOps; for (; Op != Last; ++Op) new (Op) MDNodeOperand(); (Op - 1)->setAsLastOperand(1); } return Op; } void MDNode::operator delete(void *Mem) { MDNode *N = static_cast(Mem); MDNodeOperand *Op = static_cast(Mem); for (unsigned I = 0, E = N->NumOperands; I != E; ++I) (--Op)->~MDNodeOperand(); ::operator delete(Op); } MDNode::MDNode(LLVMContext &C, unsigned ID, ArrayRef Vals, bool isFunctionLocal) : Metadata(C, ID) { NumOperands = Vals.size(); if (isFunctionLocal) setValueSubclassData(getSubclassDataFromValue() | FunctionLocalBit); // Initialize the operand list. unsigned i = 0; for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op + NumOperands; Op != E; ++Op, ++i) Op->set(Vals[i]); } GenericMDNode::~GenericMDNode() { LLVMContextImpl *pImpl = getType()->getContext().pImpl; if (isNotUniqued()) { pImpl->NonUniquedMDNodes.erase(this); } else { pImpl->MDNodeSet.erase(this); } } void GenericMDNode::dropAllReferences() { for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op + NumOperands; Op != E; ++Op) Op->set(nullptr); } static const Function *getFunctionForValue(Value *V) { if (!V) return nullptr; if (Instruction *I = dyn_cast(V)) { BasicBlock *BB = I->getParent(); return BB ? BB->getParent() : nullptr; } if (Argument *A = dyn_cast(V)) return A->getParent(); if (BasicBlock *BB = dyn_cast(V)) return BB->getParent(); if (MDNode *MD = dyn_cast(V)) return MD->getFunction(); return nullptr; } #ifndef NDEBUG static const Function *assertLocalFunction(const MDNode *N) { if (!N->isFunctionLocal()) return nullptr; // FIXME: This does not handle cyclic function local metadata. const Function *F = nullptr, *NewF = nullptr; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (Value *V = N->getOperand(i)) { if (MDNode *MD = dyn_cast(V)) NewF = assertLocalFunction(MD); else NewF = getFunctionForValue(V); } if (!F) F = NewF; else assert((NewF == nullptr || F == NewF) && "inconsistent function-local metadata"); } return F; } #endif // getFunction - If this metadata is function-local and recursively has a // function-local operand, return the first such operand's parent function. // Otherwise, return null. getFunction() should not be used for performance- // critical code because it recursively visits all the MDNode's operands. const Function *MDNode::getFunction() const { #ifndef NDEBUG return assertLocalFunction(this); #else if (!isFunctionLocal()) return nullptr; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (const Function *F = getFunctionForValue(getOperand(i))) return F; return nullptr; #endif } /// \brief Check if the Value would require a function-local MDNode. static bool isFunctionLocalValue(Value *V) { return isa(V) || isa(V) || isa(V) || (isa(V) && cast(V)->isFunctionLocal()); } MDNode *MDNode::getMDNode(LLVMContext &Context, ArrayRef Vals, FunctionLocalness FL, bool Insert) { auto &Store = Context.pImpl->MDNodeSet; GenericMDNodeInfo::KeyTy Key(Vals); auto I = Store.find_as(Key); if (I != Store.end()) return *I; if (!Insert) return nullptr; bool isFunctionLocal = false; switch (FL) { case FL_Unknown: for (Value *V : Vals) { if (!V) continue; if (isFunctionLocalValue(V)) { isFunctionLocal = true; break; } } break; case FL_No: isFunctionLocal = false; break; case FL_Yes: isFunctionLocal = true; break; } // Coallocate space for the node and Operands together, then placement new. GenericMDNode *N = new (Vals.size()) GenericMDNode(Context, Vals, isFunctionLocal); N->Hash = Key.Hash; Store.insert(N); return N; } MDNode *MDNode::get(LLVMContext &Context, ArrayRef Vals) { return getMDNode(Context, Vals, FL_Unknown); } MDNode *MDNode::getWhenValsUnresolved(LLVMContext &Context, ArrayRef Vals, bool isFunctionLocal) { return getMDNode(Context, Vals, isFunctionLocal ? FL_Yes : FL_No); } MDNode *MDNode::getIfExists(LLVMContext &Context, ArrayRef Vals) { return getMDNode(Context, Vals, FL_Unknown, false); } MDNode *MDNode::getTemporary(LLVMContext &Context, ArrayRef Vals) { MDNode *N = new (Vals.size()) MDNodeFwdDecl(Context, Vals, FL_No); N->setValueSubclassData(N->getSubclassDataFromValue() | NotUniquedBit); LeakDetector::addGarbageObject(N); return N; } void MDNode::deleteTemporary(MDNode *N) { assert(N->use_empty() && "Temporary MDNode has uses!"); assert(isa(N) && "Expected forward declaration"); assert((N->getSubclassDataFromValue() & NotUniquedBit) && "Temporary MDNode does not have NotUniquedBit set!"); LeakDetector::removeGarbageObject(N); delete cast(N); } /// \brief Return specified operand. Value *MDNode::getOperand(unsigned i) const { assert(i < getNumOperands() && "Invalid operand number"); return *getOperandPtr(const_cast(this), i); } void MDNode::setIsNotUniqued() { setValueSubclassData(getSubclassDataFromValue() | NotUniquedBit); LLVMContextImpl *pImpl = getType()->getContext().pImpl; auto *G = cast(this); G->Hash = 0; pImpl->NonUniquedMDNodes.insert(G); } // Replace value from this node's operand list. void MDNode::replaceOperand(MDNodeOperand *Op, Value *To) { Value *From = *Op; // If is possible that someone did GV->RAUW(inst), replacing a global variable // with an instruction or some other function-local object. If this is a // non-function-local MDNode, it can't point to a function-local object. // Handle this case by implicitly dropping the MDNode reference to null. // Likewise if the MDNode is function-local but for a different function. if (To && isFunctionLocalValue(To)) { if (!isFunctionLocal()) To = nullptr; else { const Function *F = getFunction(); const Function *FV = getFunctionForValue(To); // Metadata can be function-local without having an associated function. // So only consider functions to have changed if non-null. if (F && FV && F != FV) To = nullptr; } } if (From == To) return; // If this node is already not being uniqued (because one of the operands // already went to null), then there is nothing else to do here. if (isNotUniqued()) { Op->set(To); return; } auto &Store = getContext().pImpl->MDNodeSet; auto *N = cast(this); // Remove "this" from the context map. Store.erase(N); // Update the operand. Op->set(To); // If we are dropping an argument to null, we choose to not unique the MDNode // anymore. This commonly occurs during destruction, and uniquing these // brings little reuse. Also, this means we don't need to include // isFunctionLocal bits in the hash for MDNodes. if (!To) { setIsNotUniqued(); return; } // Now that the node is out of the table, get ready to reinsert it. First, // check to see if another node with the same operands already exists in the // set. If so, then this node is redundant. SmallVector Vals; GenericMDNodeInfo::KeyTy Key(N, Vals); auto I = Store.find_as(Key); if (I != Store.end()) { N->replaceAllUsesWith(*I); delete N; return; } N->Hash = Key.Hash; Store.insert(N); // If this MDValue was previously function-local but no longer is, clear // its function-local flag. if (isFunctionLocal() && !isFunctionLocalValue(To)) { bool isStillFunctionLocal = false; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { Value *V = getOperand(i); if (!V) continue; if (isFunctionLocalValue(V)) { isStillFunctionLocal = true; break; } } if (!isStillFunctionLocal) setValueSubclassData(getSubclassDataFromValue() & ~FunctionLocalBit); } } MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { if (!A) return B; if (!B) return A; SmallVector Vals(A->getNumOperands() + B->getNumOperands()); unsigned j = 0; for (unsigned i = 0, ie = A->getNumOperands(); i != ie; ++i) Vals[j++] = A->getOperand(i); for (unsigned i = 0, ie = B->getNumOperands(); i != ie; ++i) Vals[j++] = B->getOperand(i); return MDNode::get(A->getContext(), Vals); } MDNode *MDNode::intersect(MDNode *A, MDNode *B) { if (!A || !B) return nullptr; SmallVector Vals; for (unsigned i = 0, ie = A->getNumOperands(); i != ie; ++i) { Value *V = A->getOperand(i); for (unsigned j = 0, je = B->getNumOperands(); j != je; ++j) if (V == B->getOperand(j)) { Vals.push_back(V); break; } } return MDNode::get(A->getContext(), Vals); } MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { if (!A || !B) return nullptr; APFloat AVal = cast(A->getOperand(0))->getValueAPF(); APFloat BVal = cast(B->getOperand(0))->getValueAPF(); if (AVal.compare(BVal) == APFloat::cmpLessThan) return A; return B; } static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); } static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); } static bool tryMergeRange(SmallVectorImpl &EndPoints, ConstantInt *Low, ConstantInt *High) { ConstantRange NewRange(Low->getValue(), High->getValue()); unsigned Size = EndPoints.size(); APInt LB = cast(EndPoints[Size - 2])->getValue(); APInt LE = cast(EndPoints[Size - 1])->getValue(); ConstantRange LastRange(LB, LE); if (canBeMerged(NewRange, LastRange)) { ConstantRange Union = LastRange.unionWith(NewRange); Type *Ty = High->getType(); EndPoints[Size - 2] = ConstantInt::get(Ty, Union.getLower()); EndPoints[Size - 1] = ConstantInt::get(Ty, Union.getUpper()); return true; } return false; } static void addRange(SmallVectorImpl &EndPoints, ConstantInt *Low, ConstantInt *High) { if (!EndPoints.empty()) if (tryMergeRange(EndPoints, Low, High)) return; EndPoints.push_back(Low); EndPoints.push_back(High); } MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { // Given two ranges, we want to compute the union of the ranges. This // is slightly complitade by having to combine the intervals and merge // the ones that overlap. if (!A || !B) return nullptr; if (A == B) return A; // First, walk both lists in older of the lower boundary of each interval. // At each step, try to merge the new interval to the last one we adedd. SmallVector EndPoints; int AI = 0; int BI = 0; int AN = A->getNumOperands() / 2; int BN = B->getNumOperands() / 2; while (AI < AN && BI < BN) { ConstantInt *ALow = cast(A->getOperand(2 * AI)); ConstantInt *BLow = cast(B->getOperand(2 * BI)); if (ALow->getValue().slt(BLow->getValue())) { addRange(EndPoints, ALow, cast(A->getOperand(2 * AI + 1))); ++AI; } else { addRange(EndPoints, BLow, cast(B->getOperand(2 * BI + 1))); ++BI; } } while (AI < AN) { addRange(EndPoints, cast(A->getOperand(2 * AI)), cast(A->getOperand(2 * AI + 1))); ++AI; } while (BI < BN) { addRange(EndPoints, cast(B->getOperand(2 * BI)), cast(B->getOperand(2 * BI + 1))); ++BI; } // If we have more than 2 ranges (4 endpoints) we have to try to merge // the last and first ones. unsigned Size = EndPoints.size(); if (Size > 4) { ConstantInt *FB = cast(EndPoints[0]); ConstantInt *FE = cast(EndPoints[1]); if (tryMergeRange(EndPoints, FB, FE)) { for (unsigned i = 0; i < Size - 2; ++i) { EndPoints[i] = EndPoints[i + 2]; } EndPoints.resize(Size - 2); } } // If in the end we have a single range, it is possible that it is now the // full range. Just drop the metadata in that case. if (EndPoints.size() == 2) { ConstantRange Range(cast(EndPoints[0])->getValue(), cast(EndPoints[1])->getValue()); if (Range.isFullSet()) return nullptr; } return MDNode::get(A->getContext(), EndPoints); } //===----------------------------------------------------------------------===// // NamedMDNode implementation. // static SmallVector, 4> &getNMDOps(void *Operands) { return *(SmallVector, 4> *)Operands; } NamedMDNode::NamedMDNode(const Twine &N) : Name(N.str()), Parent(nullptr), Operands(new SmallVector, 4>()) {} NamedMDNode::~NamedMDNode() { dropAllReferences(); delete &getNMDOps(Operands); } unsigned NamedMDNode::getNumOperands() const { return (unsigned)getNMDOps(Operands).size(); } MDNode *NamedMDNode::getOperand(unsigned i) const { assert(i < getNumOperands() && "Invalid Operand number!"); return &*getNMDOps(Operands)[i]; } void NamedMDNode::addOperand(MDNode *M) { assert(!M->isFunctionLocal() && "NamedMDNode operands must not be function-local!"); getNMDOps(Operands).push_back(TrackingVH(M)); } void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } void NamedMDNode::dropAllReferences() { getNMDOps(Operands).clear(); } StringRef NamedMDNode::getName() const { return StringRef(Name); } //===----------------------------------------------------------------------===// // Instruction Metadata method implementations. // void Instruction::setMetadata(StringRef Kind, MDNode *Node) { if (!Node && !hasMetadata()) return; setMetadata(getContext().getMDKindID(Kind), Node); } MDNode *Instruction::getMetadataImpl(StringRef Kind) const { return getMetadataImpl(getContext().getMDKindID(Kind)); } void Instruction::dropUnknownMetadata(ArrayRef KnownIDs) { SmallSet KnownSet; KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); // Drop debug if needed if (KnownSet.erase(LLVMContext::MD_dbg)) DbgLoc = DebugLoc(); if (!hasMetadataHashEntry()) return; // Nothing to remove! DenseMap &MetadataStore = getContext().pImpl->MetadataStore; if (KnownSet.empty()) { // Just drop our entry at the store. MetadataStore.erase(this); setHasMetadataHashEntry(false); return; } LLVMContextImpl::MDMapTy &Info = MetadataStore[this]; unsigned I; unsigned E; // Walk the array and drop any metadata we don't know. for (I = 0, E = Info.size(); I != E;) { if (KnownSet.count(Info[I].first)) { ++I; continue; } Info[I] = Info.back(); Info.pop_back(); --E; } assert(E == Info.size()); if (E == 0) { // Drop our entry at the store. MetadataStore.erase(this); setHasMetadataHashEntry(false); } } /// setMetadata - Set the metadata of of the specified kind to the specified /// node. This updates/replaces metadata if already present, or removes it if /// Node is null. void Instruction::setMetadata(unsigned KindID, MDNode *Node) { if (!Node && !hasMetadata()) return; // Handle 'dbg' as a special case since it is not stored in the hash table. if (KindID == LLVMContext::MD_dbg) { DbgLoc = DebugLoc::getFromDILocation(Node); return; } // Handle the case when we're adding/updating metadata on an instruction. if (Node) { LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; assert(!Info.empty() == hasMetadataHashEntry() && "HasMetadata bit is wonked"); if (Info.empty()) { setHasMetadataHashEntry(true); } else { // Handle replacement of an existing value. for (auto &P : Info) if (P.first == KindID) { P.second = Node; return; } } // No replacement, just add it to the list. Info.push_back(std::make_pair(KindID, Node)); return; } // Otherwise, we're removing metadata from an instruction. assert((hasMetadataHashEntry() == (getContext().pImpl->MetadataStore.count(this) > 0)) && "HasMetadata bit out of date!"); if (!hasMetadataHashEntry()) return; // Nothing to remove! LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; // Common case is removing the only entry. if (Info.size() == 1 && Info[0].first == KindID) { getContext().pImpl->MetadataStore.erase(this); setHasMetadataHashEntry(false); return; } // Handle removal of an existing value. for (unsigned i = 0, e = Info.size(); i != e; ++i) if (Info[i].first == KindID) { Info[i] = Info.back(); Info.pop_back(); assert(!Info.empty() && "Removing last entry should be handled above"); return; } // Otherwise, removing an entry that doesn't exist on the instruction. } void Instruction::setAAMetadata(const AAMDNodes &N) { setMetadata(LLVMContext::MD_tbaa, N.TBAA); setMetadata(LLVMContext::MD_alias_scope, N.Scope); setMetadata(LLVMContext::MD_noalias, N.NoAlias); } MDNode *Instruction::getMetadataImpl(unsigned KindID) const { // Handle 'dbg' as a special case since it is not stored in the hash table. if (KindID == LLVMContext::MD_dbg) return DbgLoc.getAsMDNode(getContext()); if (!hasMetadataHashEntry()) return nullptr; LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; assert(!Info.empty() && "bit out of sync with hash table"); for (const auto &I : Info) if (I.first == KindID) return I.second; return nullptr; } void Instruction::getAllMetadataImpl( SmallVectorImpl> &Result) const { Result.clear(); // Handle 'dbg' as a special case since it is not stored in the hash table. if (!DbgLoc.isUnknown()) { Result.push_back(std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode(getContext()))); if (!hasMetadataHashEntry()) return; } assert(hasMetadataHashEntry() && getContext().pImpl->MetadataStore.count(this) && "Shouldn't have called this"); const LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore.find(this)->second; assert(!Info.empty() && "Shouldn't have called this"); Result.append(Info.begin(), Info.end()); // Sort the resulting array so it is stable. if (Result.size() > 1) array_pod_sort(Result.begin(), Result.end()); } void Instruction::getAllMetadataOtherThanDebugLocImpl( SmallVectorImpl> &Result) const { Result.clear(); assert(hasMetadataHashEntry() && getContext().pImpl->MetadataStore.count(this) && "Shouldn't have called this"); const LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore.find(this)->second; assert(!Info.empty() && "Shouldn't have called this"); Result.append(Info.begin(), Info.end()); // Sort the resulting array so it is stable. if (Result.size() > 1) array_pod_sort(Result.begin(), Result.end()); } /// clearMetadataHashEntries - Clear all hashtable-based metadata from /// this instruction. void Instruction::clearMetadataHashEntries() { assert(hasMetadataHashEntry() && "Caller should check"); getContext().pImpl->MetadataStore.erase(this); setHasMetadataHashEntry(false); }