//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the target machine instruction set to the code generator. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETINSTRINFO_H #define LLVM_TARGET_TARGETINSTRINFO_H #include "llvm/Target/TargetInstrDesc.h" #include "llvm/CodeGen/MachineFunction.h" namespace llvm { class InstrItineraryData; class LiveVariables; class MCAsmInfo; class MachineMemOperand; class MachineRegisterInfo; class MDNode; class MCInst; class SDNode; class ScheduleHazardRecognizer; class SelectionDAG; class ScheduleDAG; class TargetRegisterClass; class TargetRegisterInfo; template class SmallVectorImpl; //--------------------------------------------------------------------------- /// /// TargetInstrInfo - Interface to description of machine instruction set /// class TargetInstrInfo { const TargetInstrDesc *Descriptors; // Raw array to allow static init'n unsigned NumOpcodes; // Number of entries in the desc array TargetInstrInfo(const TargetInstrInfo &); // DO NOT IMPLEMENT void operator=(const TargetInstrInfo &); // DO NOT IMPLEMENT public: TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes); virtual ~TargetInstrInfo(); unsigned getNumOpcodes() const { return NumOpcodes; } /// get - Return the machine instruction descriptor that corresponds to the /// specified instruction opcode. /// const TargetInstrDesc &get(unsigned Opcode) const { assert(Opcode < NumOpcodes && "Invalid opcode!"); return Descriptors[Opcode]; } /// isTriviallyReMaterializable - Return true if the instruction is trivially /// rematerializable, meaning it has no side effects and requires no operands /// that aren't always available. bool isTriviallyReMaterializable(const MachineInstr *MI, AliasAnalysis *AA = 0) const { return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF || (MI->getDesc().isRematerializable() && (isReallyTriviallyReMaterializable(MI, AA) || isReallyTriviallyReMaterializableGeneric(MI, AA))); } protected: /// isReallyTriviallyReMaterializable - For instructions with opcodes for /// which the M_REMATERIALIZABLE flag is set, this hook lets the target /// specify whether the instruction is actually trivially rematerializable, /// taking into consideration its operands. This predicate must return false /// if the instruction has any side effects other than producing a value, or /// if it requres any address registers that are not always available. virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI, AliasAnalysis *AA) const { return false; } private: /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes /// for which the M_REMATERIALIZABLE flag is set and the target hook /// isReallyTriviallyReMaterializable returns false, this function does /// target-independent tests to determine if the instruction is really /// trivially rematerializable. bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, AliasAnalysis *AA) const; public: /// isCoalescableExtInstr - Return true if the instruction is a "coalescable" /// extension instruction. That is, it's like a copy where it's legal for the /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns /// true, then it's expected the pre-extension value is available as a subreg /// of the result register. This also returns the sub-register index in /// SubIdx. virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const { return false; } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. virtual unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { return 0; } /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination /// stack locations as well. This uses a heuristic so it isn't /// reliable for correctness. virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const { return 0; } /// hasLoadFromStackSlot - If the specified machine instruction has /// a load from a stack slot, return true along with the FrameIndex /// of the loaded stack slot and the machine mem operand containing /// the reference. If not, return false. Unlike /// isLoadFromStackSlot, this returns true for any instructions that /// loads from the stack. This is just a hint, as some cases may be /// missed. virtual bool hasLoadFromStackSlot(const MachineInstr *MI, const MachineMemOperand *&MMO, int &FrameIndex) const { return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. virtual unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { return 0; } /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination /// stack locations as well. This uses a heuristic so it isn't /// reliable for correctness. virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const { return 0; } /// hasStoreToStackSlot - If the specified machine instruction has a /// store to a stack slot, return true along with the FrameIndex of /// the loaded stack slot and the machine mem operand containing the /// reference. If not, return false. Unlike isStoreToStackSlot, /// this returns true for any instructions that stores to the /// stack. This is just a hint, as some cases may be missed. virtual bool hasStoreToStackSlot(const MachineInstr *MI, const MachineMemOperand *&MMO, int &FrameIndex) const { return 0; } /// reMaterialize - Re-issue the specified 'original' instruction at the /// specific location targeting a new destination register. /// The register in Orig->getOperand(0).getReg() will be substituted by /// DestReg:SubIdx. Any existing subreg index is preserved or composed with /// SubIdx. virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SubIdx, const MachineInstr *Orig, const TargetRegisterInfo &TRI) const = 0; /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the /// two-addrss instruction inserted by two-address pass. virtual void scheduleTwoAddrSource(MachineInstr *SrcMI, MachineInstr *UseMI, const TargetRegisterInfo &TRI) const { // Do nothing. } /// duplicate - Create a duplicate of the Orig instruction in MF. This is like /// MachineFunction::CloneMachineInstr(), but the target may update operands /// that are required to be unique. /// /// The instruction must be duplicable as indicated by isNotDuplicable(). virtual MachineInstr *duplicate(MachineInstr *Orig, MachineFunction &MF) const = 0; /// convertToThreeAddress - This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into one or more true /// three-address instructions on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the last new instruction. /// virtual MachineInstr * convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { return 0; } /// commuteInstruction - If a target has any instructions that are /// commutable but require converting to different instructions or making /// non-trivial changes to commute them, this method can overloaded to do /// that. The default implementation simply swaps the commutable operands. /// If NewMI is false, MI is modified in place and returned; otherwise, a /// new machine instruction is created and returned. Do not call this /// method for a non-commutable instruction, but there may be some cases /// where this method fails and returns null. virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI = false) const = 0; /// findCommutedOpIndices - If specified MI is commutable, return the two /// operand indices that would swap value. Return false if the instruction /// is not in a form which this routine understands. virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const = 0; /// produceSameValue - Return true if two machine instructions would produce /// identical values. By default, this is only true when the two instructions /// are deemed identical except for defs. If this function is called when the /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for /// aggressive checks. virtual bool produceSameValue(const MachineInstr *MI0, const MachineInstr *MI1, const MachineRegisterInfo *MRI = 0) const = 0; /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning /// true if it cannot be understood (e.g. it's a switch dispatch or isn't /// implemented for a target). Upon success, this returns false and returns /// with the following information in various cases: /// /// 1. If this block ends with no branches (it just falls through to its succ) /// just return false, leaving TBB/FBB null. /// 2. If this block ends with only an unconditional branch, it sets TBB to be /// the destination block. /// 3. If this block ends with a conditional branch and it falls through to a /// successor block, it sets TBB to be the branch destination block and a /// list of operands that evaluate the condition. These operands can be /// passed to other TargetInstrInfo methods to create new branches. /// 4. If this block ends with a conditional branch followed by an /// unconditional branch, it returns the 'true' destination in TBB, the /// 'false' destination in FBB, and a list of operands that evaluate the /// condition. These operands can be passed to other TargetInstrInfo /// methods to create new branches. /// /// Note that RemoveBranch and InsertBranch must be implemented to support /// cases where this method returns success. /// /// If AllowModify is true, then this routine is allowed to modify the basic /// block (e.g. delete instructions after the unconditional branch). /// virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify = false) const { return true; } /// RemoveBranch - Remove the branching code at the end of the specific MBB. /// This is only invoked in cases where AnalyzeBranch returns success. It /// returns the number of instructions that were removed. virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const { assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!"); return 0; } /// InsertBranch - Insert branch code into the end of the specified /// MachineBasicBlock. The operands to this method are the same as those /// returned by AnalyzeBranch. This is only invoked in cases where /// AnalyzeBranch returns success. It returns the number of instructions /// inserted. /// /// It is also invoked by tail merging to add unconditional branches in /// cases where AnalyzeBranch doesn't apply because there was no original /// branch to analyze. At least this much must be implemented, else tail /// merging needs to be disabled. virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond, DebugLoc DL) const { assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!"); return 0; } /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything /// after it, replacing it with an unconditional branch to NewDest. This is /// used by the tail merging pass. virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const = 0; /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic /// block at the specified instruction (i.e. instruction would be the start /// of a new basic block). virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { return true; } /// isProfitableToIfCvt - Return true if it's profitable to predicate /// instructions with accumulated instruction latency of "NumCycles" /// of the specified basic block, where the probability of the instructions /// being executed is given by Probability, and Confidence is a measure /// of our confidence that it will be properly predicted. virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles, unsigned ExtraPredCycles, float Probability, float Confidence) const { return false; } /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one /// checks for the case where two basic blocks from true and false path /// of a if-then-else (diamond) are predicated on mutally exclusive /// predicates, where the probability of the true path being taken is given /// by Probability, and Confidence is a measure of our confidence that it /// will be properly predicted. virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, float Probability, float Confidence) const { return false; } /// isProfitableToDupForIfCvt - Return true if it's profitable for /// if-converter to duplicate instructions of specified accumulated /// instruction latencies in the specified MBB to enable if-conversion. /// The probability of the instructions being executed is given by /// Probability, and Confidence is a measure of our confidence that it /// will be properly predicted. virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles, float Probability, float Confidence) const { return false; } /// copyPhysReg - Emit instructions to copy a pair of physical registers. virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!"); } /// storeRegToStackSlot - Store the specified register of the given register /// class to the specified stack frame index. The store instruction is to be /// added to the given machine basic block before the specified machine /// instruction. If isKill is true, the register operand is the last use and /// must be marked kill. virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!"); } /// loadRegFromStackSlot - Load the specified register of the given register /// class from the specified stack frame index. The load instruction is to be /// added to the given machine basic block before the specified machine /// instruction. virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!"); } /// emitFrameIndexDebugValue - Emit a target-dependent form of /// DBG_VALUE encoding the address of a frame index. Addresses would /// normally be lowered the same way as other addresses on the target, /// e.g. in load instructions. For targets that do not support this /// the debug info is simply lost. /// If you add this for a target you should handle this DBG_VALUE in the /// target-specific AsmPrinter code as well; you will probably get invalid /// assembly output if you don't. virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *MDPtr, DebugLoc dl) const { return 0; } /// foldMemoryOperand - Attempt to fold a load or store of the specified stack /// slot into the specified machine instruction for the specified operand(s). /// If this is possible, a new instruction is returned with the specified /// operand folded, otherwise NULL is returned. /// The new instruction is inserted before MI, and the client is responsible /// for removing the old instruction. MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI, const SmallVectorImpl &Ops, int FrameIndex) const; /// foldMemoryOperand - Same as the previous version except it allows folding /// of any load and store from / to any address, not just from a specific /// stack slot. MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI, const SmallVectorImpl &Ops, MachineInstr* LoadMI) const; protected: /// foldMemoryOperandImpl - Target-dependent implementation for /// foldMemoryOperand. Target-independent code in foldMemoryOperand will /// take care of adding a MachineMemOperand to the newly created instruction. virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, int FrameIndex) const { return 0; } /// foldMemoryOperandImpl - Target-dependent implementation for /// foldMemoryOperand. Target-independent code in foldMemoryOperand will /// take care of adding a MachineMemOperand to the newly created instruction. virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, MachineInstr* LoadMI) const { return 0; } public: /// canFoldMemoryOperand - Returns true for the specified load / store if /// folding is possible. virtual bool canFoldMemoryOperand(const MachineInstr *MI, const SmallVectorImpl &Ops) const =0; /// unfoldMemoryOperand - Separate a single instruction which folded a load or /// a store or a load and a store into two or more instruction. If this is /// possible, returns true as well as the new instructions by reference. virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl &NewMIs) const{ return false; } virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl &NewNodes) const { return false; } /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new /// instruction after load / store are unfolded from an instruction of the /// specified opcode. It returns zero if the specified unfolding is not /// possible. If LoadRegIndex is non-null, it is filled in with the operand /// index of the operand which will hold the register holding the loaded /// value. virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex = 0) const { return 0; } /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler /// to determine if two loads are loading from the same base address. It /// should only return true if the base pointers are the same and the /// only differences between the two addresses are the offset. It also returns /// the offsets by reference. virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const { return false; } /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should /// be scheduled togther. On some targets if two loads are loading from /// addresses in the same cache line, it's better if they are scheduled /// together. This function takes two integers that represent the load offsets /// from the common base address. It returns true if it decides it's desirable /// to schedule the two loads together. "NumLoads" is the number of loads that /// have already been scheduled after Load1. virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const { return false; } /// ReverseBranchCondition - Reverses the branch condition of the specified /// condition list, returning false on success and true if it cannot be /// reversed. virtual bool ReverseBranchCondition(SmallVectorImpl &Cond) const { return true; } /// insertNoop - Insert a noop into the instruction stream at the specified /// point. virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const; /// getNoopForMachoTarget - Return the noop instruction to use for a noop. virtual void getNoopForMachoTarget(MCInst &NopInst) const { // Default to just using 'nop' string. } /// isPredicated - Returns true if the instruction is already predicated. /// virtual bool isPredicated(const MachineInstr *MI) const { return false; } /// isUnpredicatedTerminator - Returns true if the instruction is a /// terminator instruction that has not been predicated. virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const; /// PredicateInstruction - Convert the instruction into a predicated /// instruction. It returns true if the operation was successful. virtual bool PredicateInstruction(MachineInstr *MI, const SmallVectorImpl &Pred) const = 0; /// SubsumesPredicate - Returns true if the first specified predicate /// subsumes the second, e.g. GE subsumes GT. virtual bool SubsumesPredicate(const SmallVectorImpl &Pred1, const SmallVectorImpl &Pred2) const { return false; } /// DefinesPredicate - If the specified instruction defines any predicate /// or condition code register(s) used for predication, returns true as well /// as the definition predicate(s) by reference. virtual bool DefinesPredicate(MachineInstr *MI, std::vector &Pred) const { return false; } /// isPredicable - Return true if the specified instruction can be predicated. /// By default, this returns true for every instruction with a /// PredicateOperand. virtual bool isPredicable(MachineInstr *MI) const { return MI->getDesc().isPredicable(); } /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine /// instruction that defines the specified register class. virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { return true; } /// isSchedulingBoundary - Test if the given instruction should be /// considered a scheduling boundary. This primarily includes labels and /// terminators. virtual bool isSchedulingBoundary(const MachineInstr *MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const = 0; /// Measure the specified inline asm to determine an approximation of its /// length. virtual unsigned getInlineAsmLength(const char *Str, const MCAsmInfo &MAI) const; /// CreateTargetPreRAHazardRecognizer - Allocate and return a hazard /// recognizer to use for this target when scheduling the machine instructions /// before register allocation. virtual ScheduleHazardRecognizer* CreateTargetHazardRecognizer(const TargetMachine *TM, const ScheduleDAG *DAG) const = 0; /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard /// recognizer to use for this target when scheduling the machine instructions /// after register allocation. virtual ScheduleHazardRecognizer* CreateTargetPostRAHazardRecognizer(const InstrItineraryData*, const ScheduleDAG *DAG) const = 0; /// AnalyzeCompare - For a comparison instruction, return the source register /// in SrcReg and the value it compares against in CmpValue. Return true if /// the comparison instruction can be analyzed. virtual bool AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &Mask, int &Value) const { return false; } /// OptimizeCompareInstr - See if the comparison instruction can be converted /// into something more efficient. E.g., on ARM most instructions can set the /// flags register, obviating the need for a separate CMP. virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int Mask, int Value, const MachineRegisterInfo *MRI) const { return false; } /// FoldImmediate - 'Reg' is known to be defined by a move immediate /// instruction, try to fold the immediate into the use instruction. virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, unsigned Reg, MachineRegisterInfo *MRI) const { return false; } /// getNumMicroOps - Return the number of u-operations the given machine /// instruction will be decoded to on the target cpu. virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr *MI) const; /// getOperandLatency - Compute and return the use operand latency of a given /// pair of def and use. /// In most cases, the static scheduling itinerary was enough to determine the /// operand latency. But it may not be possible for instructions with variable /// number of defs / uses. virtual int getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const; virtual int getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const; /// getInstrLatency - Compute the instruction latency of a given instruction. /// If the instruction has higher cost when predicated, it's returned via /// PredCost. virtual int getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr *MI, unsigned *PredCost = 0) const; virtual int getInstrLatency(const InstrItineraryData *ItinData, SDNode *Node) const; /// hasHighOperandLatency - Compute operand latency between a def of 'Reg' /// and an use in the current loop, return true if the target considered /// it 'high'. This is used by optimization passes such as machine LICM to /// determine whether it makes sense to hoist an instruction out even in /// high register pressure situation. virtual bool hasHighOperandLatency(const InstrItineraryData *ItinData, const MachineRegisterInfo *MRI, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const { return false; } /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true /// if the target considered it 'low'. virtual bool hasLowDefLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx) const; }; /// TargetInstrInfoImpl - This is the default implementation of /// TargetInstrInfo, which just provides a couple of default implementations /// for various methods. This separated out because it is implemented in /// libcodegen, not in libtarget. class TargetInstrInfoImpl : public TargetInstrInfo { protected: TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes) : TargetInstrInfo(desc, NumOpcodes) {} public: virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, MachineBasicBlock *NewDest) const; virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI = false) const; virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const; virtual bool canFoldMemoryOperand(const MachineInstr *MI, const SmallVectorImpl &Ops) const; virtual bool PredicateInstruction(MachineInstr *MI, const SmallVectorImpl &Pred) const; virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SubReg, const MachineInstr *Orig, const TargetRegisterInfo &TRI) const; virtual MachineInstr *duplicate(MachineInstr *Orig, MachineFunction &MF) const; virtual bool produceSameValue(const MachineInstr *MI0, const MachineInstr *MI1, const MachineRegisterInfo *MRI) const; virtual bool isSchedulingBoundary(const MachineInstr *MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const; virtual ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const; virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData*, const ScheduleDAG*) const; }; } // End llvm namespace #endif