//===- LevelRaise.cpp - Code to change LLVM to higher level -----------------=// // // This file implements the 'raising' part of the LevelChange API. This is // useful because, in general, it makes the LLVM code terser and easier to // analyze. Note that it is good to run DCE after doing this transformation. // // Eliminate silly things in the source that do not effect the level, but do // clean up the code: // * Casts of casts // - getelementptr/load & getelementptr/store are folded into a direct // load or store // - Convert this code (for both alloca and malloc): // %reg110 = shl uint %n, ubyte 2 ;; // %reg108 = alloca ubyte, uint %reg110 ;; // %cast76 = cast ubyte* %reg108 to uint* ;; // To: %cast76 = alloca uint, uint %n // Convert explicit addressing to use getelementptr instruction where possible // - ... // // Convert explicit addressing on pointers to use getelementptr instruction. // - If a pointer is used by arithmetic operation, insert an array casted // version into the source program, only for the following pointer types: // * Method argument pointers // - Pointers returned by alloca or malloc // - Pointers returned by function calls // - If a pointer is indexed with a value scaled by a constant size equal // to the element size of the array, the expression is replaced with a // getelementptr instruction. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/LevelChange.h" #include "TransformInternals.h" #include "llvm/Method.h" #include "llvm/Support/STLExtras.h" #include "llvm/iOther.h" #include "llvm/iMemory.h" #include "llvm/ConstPoolVals.h" #include "llvm/Optimizations/ConstantHandling.h" #include "llvm/Optimizations/DCE.h" #include "llvm/Analysis/Expressions.h" #include #include "llvm/Assembly/Writer.h" //#define DEBUG_PEEPHOLE_INSTS 1 #ifdef DEBUG_PEEPHOLE_INSTS #define PRINT_PEEPHOLE(ID, NUM, I) \ cerr << "Inst P/H " << ID << "[" << NUM << "] " << I; #else #define PRINT_PEEPHOLE(ID, NUM, I) #endif #define PRINT_PEEPHOLE1(ID, I1) do { PRINT_PEEPHOLE(ID, 0, I1); } while (0) #define PRINT_PEEPHOLE2(ID, I1, I2) \ do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); } while (0) #define PRINT_PEEPHOLE3(ID, I1, I2, I3) \ do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); \ PRINT_PEEPHOLE(ID, 2, I3); } while (0) #define PRINT_PEEPHOLE4(ID, I1, I2, I3, I4) \ do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); \ PRINT_PEEPHOLE(ID, 2, I3); PRINT_PEEPHOLE(ID, 3, I4); } while (0) // isReinterpretingCast - Return true if the cast instruction specified will // cause the operand to be "reinterpreted". A value is reinterpreted if the // cast instruction would cause the underlying bits to change. // static inline bool isReinterpretingCast(const CastInst *CI) { return !losslessCastableTypes(CI->getOperand(0)->getType(), CI->getType()); } // DoInsertArrayCast - If the argument value has a pointer type, and if the // argument value is used as an array, insert a cast before the specified // basic block iterator that casts the value to an array pointer. Return the // new cast instruction (in the CastResult var), or null if no cast is inserted. // static bool DoInsertArrayCast(Method *CurMeth, Value *V, BasicBlock *BB, BasicBlock::iterator &InsertBefore, CastInst *&CastResult) { const PointerType *ThePtrType = dyn_cast(V->getType()); if (!ThePtrType) return false; bool InsertCast = false; for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { Instruction *Inst = cast(*I); switch (Inst->getOpcode()) { default: break; // Not an interesting use... case Instruction::Add: // It's being used as an array index! //case Instruction::Sub: InsertCast = true; break; case Instruction::Cast: // There is already a cast instruction! if (const PointerType *PT = dyn_cast(Inst->getType())) if (const ArrayType *AT = dyn_cast(PT->getValueType())) if (AT->getElementType() == ThePtrType->getValueType()) { // Cast already exists! Return the existing one! CastResult = cast(Inst); return false; // No changes made to program though... } break; } } if (!InsertCast) return false; // There is no reason to insert a cast! // Insert a cast! const Type *ElTy = ThePtrType->getValueType(); const PointerType *DestTy = PointerType::get(ArrayType::get(ElTy)); CastResult = new CastInst(V, DestTy); BB->getInstList().insert(InsertBefore, CastResult); //cerr << "Inserted cast: " << CastResult; return true; // Made a change! } // DoInsertArrayCasts - Loop over all "incoming" values in the specified method, // inserting a cast for pointer values that are used as arrays. For our // purposes, an incoming value is considered to be either a value that is // either a method parameter, a value created by alloca or malloc, or a value // returned from a function call. All casts are kept attached to their original // values through the PtrCasts map. // static bool DoInsertArrayCasts(Method *M, map &PtrCasts) { assert(!M->isExternal() && "Can't handle external methods!"); // Insert casts for all arguments to the function... bool Changed = false; BasicBlock *CurBB = M->front(); BasicBlock::iterator It = CurBB->begin(); for (Method::ArgumentListType::iterator AI = M->getArgumentList().begin(), AE = M->getArgumentList().end(); AI != AE; ++AI) { CastInst *TheCast = 0; if (DoInsertArrayCast(M, *AI, CurBB, It, TheCast)) { It = CurBB->begin(); // We might have just invalidated the iterator! Changed = true; // Yes we made a change ++It; // Insert next cast AFTER this one... } if (TheCast) // Is there a cast associated with this value? PtrCasts[*AI] = TheCast; // Yes, add it to the map... } // TODO: insert casts for alloca, malloc, and function call results. Also, // look for pointers that already have casts, to add to the map. return Changed; } // DoElminatePointerArithmetic - Loop over each incoming pointer variable, // replacing indexing arithmetic with getelementptr calls. // static bool DoEliminatePointerArithmetic(const pair &Val) { Value *V = Val.first; // The original pointer CastInst *CV = Val.second; // The array casted version of the pointer... for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { Instruction *Inst = cast(*I); if (Inst->getOpcode() != Instruction::Add) continue; // We only care about add instructions BinaryOperator *Add = cast(Inst); // Make sure the array is the first operand of the add expression... if (Add->getOperand(0) != V) Add->swapOperands(); // Get the amount added to the pointer value... Value *AddAmount = Add->getOperand(1); } return false; } // Peephole Malloc instructions: we take a look at the use chain of the // malloc instruction, and try to find out if the following conditions hold: // 1. The malloc is of the form: 'malloc [sbyte], uint ' // 2. The only users of the malloc are cast & add instructions // 3. Of the cast instructions, there is only one destination pointer type // [RTy] where the size of the pointed to object is equal to the number // of bytes allocated. // // If these conditions hold, we convert the malloc to allocate an [RTy] // element. This should be extended in the future to handle arrays. TODO // static bool PeepholeMallocInst(BasicBlock *BB, BasicBlock::iterator &BI) { MallocInst *MI = cast(*BI); if (!MI->isArrayAllocation()) return false; // No array allocation? ConstPoolUInt *Amt = dyn_cast(MI->getArraySize()); if (Amt == 0 || MI->getAllocatedType() != ArrayType::get(Type::SByteTy)) return false; // Get the number of bytes allocated... unsigned Size = Amt->getValue(); const Type *ResultTy = 0; // Loop over all of the uses of the malloc instruction, inspecting casts. for (Value::use_iterator I = MI->use_begin(), E = MI->use_end(); I != E; ++I) { if (CastInst *CI = dyn_cast(*I)) { //cerr << "\t" << CI; // We only work on casts to pointer types for sure, be conservative if (!isa(CI->getType())) { cerr << "Found cast of malloc value to non pointer type:\n" << CI; return false; } const Type *DestTy = cast(CI->getType())->getValueType(); if (isa(DestTy)) { cerr << "Avoided malloc conversion because of type: " << DestTy << " TODO.\n"; return false; } if (TD.getTypeSize(DestTy) == Size && DestTy != ResultTy) { // Does the size of the allocated type match the number of bytes // allocated? // if (ResultTy == 0) { ResultTy = DestTy; // Keep note of this for future uses... } else { // It's overdefined! We don't know which type to convert to! return false; } } } } // If we get this far, we have either found, or not, a type that is cast to // that is of the same size as the malloc instruction. if (!ResultTy) return false; // Now we check to see if we can convert the return value of malloc to the // specified pointer type. All this is moot if we can't. // ValueTypeCache ConvertedTypes; if (RetValConvertableToType(MI, PointerType::get(ResultTy), ConvertedTypes)) { // Yup, it's convertable, do the transformation now! PRINT_PEEPHOLE1("mall-refine:in ", MI); // Create a new malloc instruction, and insert it into the method... MallocInst *NewMI = new MallocInst(PointerType::get(ResultTy)); NewMI->setName(MI->getName()); MI->setName(""); BI = BB->getInstList().insert(BI, NewMI)+1; // Create a new cast instruction to cast it to the old type... CastInst *NewCI = new CastInst(NewMI, MI->getType()); BB->getInstList().insert(BI, NewCI); // Move all users of the old malloc instruction over to use the new cast... MI->replaceAllUsesWith(NewCI); ValueMapCache ValueMap; ConvertUsersType(NewCI, NewMI, ValueMap); // This will delete MI! BI = BB->begin(); // Rescan basic block. BI might be invalidated. PRINT_PEEPHOLE1("mall-refine:out", NewMI); return true; } return false; } // Peephole optimize the following instructions: // %t1 = cast ulong to {<...>} * // %t2 = add {<...>} * %SP, %t1 ;; Constant must be 2nd operand // // or // %t1 = cast {<...>}* %SP to int* // %t5 = cast ulong to int* // %t2 = add int* %t1, %t5 ;; int is same size as field // // Into: %t3 = getelementptr {<...>} * %SP, // %t2 = cast * %t3 to {<...>}* // static bool PeepholeOptimizeAddCast(BasicBlock *BB, BasicBlock::iterator &BI, Value *AddOp1, CastInst *AddOp2) { Value *OffsetVal = AddOp2->getOperand(0); Value *SrcPtr; // Of type pointer to struct... const StructType *StructTy; if ((StructTy = getPointedToStruct(AddOp1->getType()))) { SrcPtr = AddOp1; // Handle the first case... } else if (CastInst *AddOp1c = dyn_cast(AddOp1)) { SrcPtr = AddOp1c->getOperand(0); // Handle the second case... StructTy = getPointedToStruct(SrcPtr->getType()); } // Only proceed if we have detected all of our conditions successfully... if (!StructTy || !SrcPtr || !OffsetVal->getType()->isIntegral()) return false; // See if the cast is of an integer expression that is either a constant, // or a value scaled by some amount with a possible offset. // analysis::ExprType Expr = analysis::ClassifyExpression(OffsetVal); unsigned Offset = 0, Scale = 1; // The expression must either be a constant, or a scaled index to be useful if (!Expr.Offset && !Expr.Scale) return false; // Get the offset value if it exists... if (Expr.Offset) { if (ConstPoolSInt *CPSI = dyn_cast(Expr.Offset)) Offset = (unsigned)CPSI->getValue(); else { ConstPoolUInt *CPUI = cast(Expr.Offset); Offset = (unsigned)CPUI->getValue(); } assert(Offset != 0 && "Expression analysis failure!"); } // Get the scale value if it exists... if (Expr.Scale) { if (ConstPoolSInt *CPSI = dyn_cast(Expr.Scale)) Scale = (unsigned)CPSI->getValue(); else { ConstPoolUInt *CPUI = cast(Expr.Scale); Scale = (unsigned)CPUI->getValue(); } assert(Scale != 1 && "Expression analysis failure!"); } // Check to make sure the offset is not negative or really large, outside the // scope of this structure... // if (Offset >= TD.getTypeSize(StructTy)) return false; const StructLayout *SL = TD.getStructLayout(StructTy); vector Offsets; unsigned ActualOffset = Offset; const Type *ElTy = getStructOffsetType(StructTy, ActualOffset, Offsets); if (getPointedToStruct(AddOp1->getType())) { // case 1 PRINT_PEEPHOLE2("add-to-gep1:in", AddOp2, *BI); } else { PRINT_PEEPHOLE3("add-to-gep2:in", AddOp1, AddOp2, *BI); } GetElementPtrInst *GEP = new GetElementPtrInst(SrcPtr, Offsets); //AddOp2->getName()); BI = BB->getInstList().insert(BI, GEP)+1; Instruction *AddrSrc = GEP; if (const ArrayType *AT = dyn_cast(ElTy)) { assert((Scale == 1 || Offset == ActualOffset) && "Cannot handle scaled expression and unused offset in the same " "instruction until after GEP array works!"); // Check to see if we have bottomed out INSIDE of an array reference.. // if (Offset != ActualOffset) { // Insert a cast of the "rest" of the offset to the appropriate // pointer type. CastInst *OffInst = new CastInst(ConstPoolUInt::get(Type::ULongTy, Offset-ActualOffset), GEP->getType()); BI = BB->getInstList().insert(BI, OffInst)+1; // Now insert an ADD to actually adjust the pointer... Instruction *AddInst = BinaryOperator::create(Instruction::Add, GEP, OffInst); BI = BB->getInstList().insert(BI, AddInst)+1; PRINT_PEEPHOLE2("add-to-gep:out1", OffInst, AddInst); AddrSrc = AddInst; } else if (Scale != 1) { // If the scale factor occurs, then this means that there is an index into // this element of the array. Check to make sure the scale factor is the // same as the size of the datatype that we are dealing with. // assert(Scale == TD.getTypeSize(AT->getElementType()) && "Scaling by something other than the array element size!!"); // TODO: In the future, we will not want to cast the index and scale to // pointer types first. We will want to create a GEP directly here. // Now we must actually perform the scaling operation to get an // appropriate value to add in... but the scale has to be done in the // appropriate destination pointer type, so cast the index value now. // // Cast the base index pointer CastInst *IdxValue = new CastInst(Expr.Var, GEP->getType()); BI = BB->getInstList().insert(BI, IdxValue)+1; // Case the scale amount as well... CastInst *ScaleAmt = new CastInst(ConstPoolUInt::get(Type::ULongTy, Scale), GEP->getType()); BI = BB->getInstList().insert(BI, ScaleAmt)+1; // Insert the multiply now. Make sure to make the constant the second arg Instruction *ScaledVal = BinaryOperator::create(Instruction::Mul, IdxValue, ScaleAmt); BI = BB->getInstList().insert(BI, ScaledVal)+1; // Now insert an ADD to actually adjust the pointer... Instruction *AddInst = BinaryOperator::create(Instruction::Add, GEP, ScaledVal); BI = BB->getInstList().insert(BI, AddInst)+1; PRINT_PEEPHOLE4("add-to-gep:out1", IdxValue, ScaleAmt, ScaledVal, AddInst); AddrSrc = AddInst; } // Insert a cast of the pointer to array of X to be a pointer to the // element of the array. // // Insert a cast of the "rest" of the offset to the appropriate // pointer type. CastInst *ACI = new CastInst(AddrSrc, AT->getElementType()); BI = BB->getInstList().insert(BI, ACI)+1; AddrSrc = ACI; } else { assert(Offset == ActualOffset && "GEP to middle of non array!"); assert(Scale == 1 && "Scale factor for expr that is not an array idx!"); } Instruction *NCI = new CastInst(AddrSrc, AddOp1->getType()); ReplaceInstWithInst(BB->getInstList(), BI, NCI); PRINT_PEEPHOLE2("add-to-gep:out", GEP, NCI); return true; } // Peephole optimize the following instructions: // %t1 = cast int (uint) * %reg111 to uint (...) * // %t2 = call uint (...) * %cast111( uint %key ) // // Into: %t3 = call int (uint) * %reg111( uint %key ) // %t2 = cast int %t3 to uint // static bool PeepholeCallInst(BasicBlock *BB, BasicBlock::iterator &BI) { CallInst *CI = cast(*BI); return false; } static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { Instruction *I = *BI; if (CastInst *CI = dyn_cast(I)) { Value *Src = CI->getOperand(0); Instruction *SrcI = dyn_cast(Src); // Nonnull if instr source const Type *DestTy = CI->getType(); // Peephole optimize the following instruction: // %V2 = cast %V to // // Into: // if (DestTy == Src->getType()) { // Check for a cast to same type as src!! PRINT_PEEPHOLE1("cast-of-self-ty", CI); CI->replaceAllUsesWith(Src); if (!Src->hasName() && CI->hasName()) { string Name = CI->getName(); CI->setName(""); Src->setName(Name, BB->getParent()->getSymbolTable()); } return true; } // Peephole optimize the following instructions: // %tmp = cast %V to // %V = cast %tmp to ; Where ty & ty2 are same size // // Into: cast %V to // if (SrcI) if (CastInst *CSrc = dyn_cast(SrcI)) if (isReinterpretingCast(CI) + isReinterpretingCast(CSrc) < 2) { // We can only do c-c elimination if, at most, one cast does a // reinterpretation of the input data. // // If legal, make this cast refer the the original casts argument! // PRINT_PEEPHOLE2("cast-cast:in ", CI, CSrc); CI->setOperand(0, CSrc->getOperand(0)); PRINT_PEEPHOLE1("cast-cast:out", CI); return true; } // Check to see if it's a cast of an instruction that does not depend on the // specific type of the operands to do it's job. if (!isReinterpretingCast(CI)) { ValueTypeCache ConvertedTypes; if (RetValConvertableToType(CI, Src->getType(), ConvertedTypes)) { PRINT_PEEPHOLE2("CAST-DEST-EXPR-CONV:in ", CI, Src); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "\nCONVERTING EXPR TYPE:\n"; #endif ValueMapCache ValueMap; ConvertUsersType(CI, Src, ValueMap); // This will delete CI! BI = BB->begin(); // Rescan basic block. BI might be invalidated. PRINT_PEEPHOLE1("CAST-DEST-EXPR-CONV:out", Src); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "DONE CONVERTING EXPR TYPE: \n\n";// << BB->getParent(); #endif return true; } else { ConvertedTypes.clear(); if (ExpressionConvertableToType(Src, DestTy, ConvertedTypes)) { PRINT_PEEPHOLE2("CAST-SRC-EXPR-CONV:in ", CI, Src); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "\nCONVERTING SRC EXPR TYPE:\n"; #endif ValueMapCache ValueMap; Value *E = ConvertExpressionToType(Src, DestTy, ValueMap); if (ConstPoolVal *CPV = dyn_cast(E)) CI->replaceAllUsesWith(CPV); BI = BB->begin(); // Rescan basic block. BI might be invalidated. PRINT_PEEPHOLE1("CAST-SRC-EXPR-CONV:out", E); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "DONE CONVERTING SRC EXPR TYPE: \n\n";// << BB->getParent(); #endif return true; } } } // Check to see if we are casting from a structure pointer to a pointer to // the first element of the structure... to avoid munching other peepholes, // we only let this happen if there are no add uses of the cast. // // Peephole optimize the following instructions: // %t1 = cast {<...>} * %StructPtr to * // // Into: %t2 = getelementptr {<...>} * %StructPtr, <0, 0, 0, ...> // %t1 = cast * %t1 to * // #if 1 if (const StructType *STy = getPointedToStruct(Src->getType())) if (const PointerType *DestPTy = dyn_cast(DestTy)) { // Loop over uses of the cast, checking for add instructions. If an add // exists, this is probably a part of a more complex GEP, so we don't // want to mess around with the cast. // bool HasAddUse = false; for (Value::use_iterator I = CI->use_begin(), E = CI->use_end(); I != E; ++I) if (isa(*I) && cast(*I)->getOpcode() == Instruction::Add) { HasAddUse = true; break; } // If it doesn't have an add use, check to see if the dest type is // losslessly convertable to one of the types in the start of the struct // type. // if (!HasAddUse) { const Type *DestPointedTy = DestPTy->getValueType(); unsigned Depth = 1; const StructType *CurSTy = STy; const Type *ElTy = 0; while (CurSTy) { // Check for a zero element struct type... if we have one, bail. if (CurSTy->getElementTypes().size() == 0) break; // Grab the first element of the struct type, which must lie at // offset zero in the struct. // ElTy = CurSTy->getElementTypes()[0]; // Did we find what we're looking for? if (losslessCastableTypes(ElTy, DestPointedTy)) break; // Nope, go a level deeper. ++Depth; CurSTy = dyn_cast(ElTy); ElTy = 0; } // Did we find what we were looking for? If so, do the transformation if (ElTy) { PRINT_PEEPHOLE1("cast-for-first:in", CI); // Build the index vector, full of all zeros vector Indices(Depth, ConstPoolUInt::get(Type::UByteTy,0)); // Insert the new T cast instruction... stealing old T's name GetElementPtrInst *GEP = new GetElementPtrInst(Src, Indices, CI->getName()); CI->setName(""); BI = BB->getInstList().insert(BI, GEP)+1; // Make the old cast instruction reference the new GEP instead of // the old src value. // CI->setOperand(0, GEP); PRINT_PEEPHOLE2("cast-for-first:out", GEP, CI); return true; } } } #endif #if 1 } else if (MallocInst *MI = dyn_cast(I)) { if (PeepholeMallocInst(BB, BI)) return true; } else if (CallInst *CI = dyn_cast(I)) { if (PeepholeCallInst(BB, BI)) return true; } else if (StoreInst *SI = dyn_cast(I)) { Value *Val = SI->getOperand(0); Value *Pointer = SI->getPointerOperand(); // Peephole optimize the following instructions: // %t1 = getelementptr {<...>} * %StructPtr, // store %v, * %t1 // // Into: store %v, {<...>} * %StructPtr, // if (GetElementPtrInst *GEP = dyn_cast(Pointer)) { // Append any indices that the store instruction has onto the end of the // ones that the GEP is carrying... // vector Indices(GEP->getIndices()); Indices.insert(Indices.end(), SI->getIndices().begin(), SI->getIndices().end()); PRINT_PEEPHOLE2("gep-store:in", GEP, SI); ReplaceInstWithInst(BB->getInstList(), BI, SI = new StoreInst(Val, GEP->getPointerOperand(), Indices)); PRINT_PEEPHOLE1("gep-store:out", SI); return true; } // Peephole optimize the following instructions: // %t = cast * %P to * ;; If T1 is losslessly convertable to T2 // store %V, * %t // // Into: // %t = cast %V to // store %t2, * %P // if (CastInst *CI = dyn_cast(Pointer)) if (Value *CastSrc = CI->getOperand(0)) // CSPT = CastSrcPointerType if (PointerType *CSPT = dyn_cast(CastSrc->getType())) if (losslessCastableTypes(Val->getType(), // convertable types! CSPT->getValueType()) && !SI->hasIndices()) { // No subscripts yet! PRINT_PEEPHOLE3("st-src-cast:in ", Pointer, Val, SI); // Insert the new T cast instruction... stealing old T's name CastInst *NCI = new CastInst(Val, CSPT->getValueType(), CI->getName()); CI->setName(""); BI = BB->getInstList().insert(BI, NCI)+1; // Replace the old store with a new one! ReplaceInstWithInst(BB->getInstList(), BI, SI = new StoreInst(NCI, CastSrc)); PRINT_PEEPHOLE3("st-src-cast:out", NCI, CastSrc, SI); return true; } } else if (LoadInst *LI = dyn_cast(I)) { Value *Pointer = LI->getPointerOperand(); // Peephole optimize the following instructions: // %t1 = getelementptr {<...>} * %StructPtr, // %V = load * %t1 // // Into: load {<...>} * %StructPtr, // if (GetElementPtrInst *GEP = dyn_cast(Pointer)) { // Append any indices that the load instruction has onto the end of the // ones that the GEP is carrying... // vector Indices(GEP->getIndices()); Indices.insert(Indices.end(), LI->getIndices().begin(), LI->getIndices().end()); PRINT_PEEPHOLE2("gep-load:in", GEP, LI); ReplaceInstWithInst(BB->getInstList(), BI, LI = new LoadInst(GEP->getPointerOperand(), Indices)); PRINT_PEEPHOLE1("gep-load:out", LI); return true; } // Peephole optimize the following instructions: // %t1 = cast * %t0 to * // %V = load * %t1 // // Into: %t1 = load * %t0 // %V = cast %t1 to // // The idea behind this transformation is that if the expression type // conversion engine could not convert the cast into some other nice form, // that there is something fundementally wrong with the current shape of // the program. Move the cast through the load and try again. This will // leave the original cast instruction, to presumably become dead. // if (CastInst *CI = dyn_cast(Pointer)) { Value *SrcVal = CI->getOperand(0); const PointerType *SrcTy = dyn_cast(SrcVal->getType()); const Type *ElTy = SrcTy ? SrcTy->getValueType() : 0; // Make sure that nothing will be lost in the new cast... if (SrcTy && losslessCastableTypes(ElTy, LI->getType())) { PRINT_PEEPHOLE2("CL-LoadCast:in ", CI, LI); string CName = CI->getName(); CI->setName(""); LoadInst *NLI = new LoadInst(SrcVal, LI->getName()); LI->setName(""); // Take over the old load's name // Insert the load before the old load BI = BB->getInstList().insert(BI, NLI)+1; // Replace the old load with a new cast... ReplaceInstWithInst(BB->getInstList(), BI, CI = new CastInst(NLI, LI->getType(), CName)); PRINT_PEEPHOLE2("CL-LoadCast:out", NLI, CI); return true; } } } else if (I->getOpcode() == Instruction::Add && isa(I->getOperand(1))) { if (PeepholeOptimizeAddCast(BB, BI, I->getOperand(0), cast(I->getOperand(1)))) return true; #endif } return false; } static bool DoRaisePass(Method *M) { bool Changed = false; for (Method::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) { BasicBlock *BB = *MI; BasicBlock::InstListType &BIL = BB->getInstList(); for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { if (opt::DeadCodeElimination::dceInstruction(BIL, BI)) { Changed = true; #ifdef DEBUG_PEEPHOLE_INSTS cerr << "DeadCode Elinated!\n"; #endif } else if (PeepholeOptimize(BB, BI)) Changed = true; else ++BI; } } return Changed; } // RaisePointerReferences::doit - Raise a method representation to a higher // level. // bool RaisePointerReferences::doit(Method *M) { if (M->isExternal()) return false; bool Changed = false; #ifdef DEBUG_PEEPHOLE_INSTS cerr << "\n\n\nStarting to work on Method '" << M->getName() << "'\n"; #endif while (DoRaisePass(M)) Changed = true; #if 0 // PtrCasts - Keep a mapping between the pointer values (the key of the // map), and the cast to array pointer (the value) in this map. This is // used when converting pointer math into array addressing. // map PtrCasts; // Insert casts for all incoming pointer values. Keep track of those casts // and the identified incoming values in the PtrCasts map. // Changed |= DoInsertArrayCasts(M, PtrCasts); // Loop over each incoming pointer variable, replacing indexing arithmetic // with getelementptr calls. // Changed |= reduce_apply_bool(PtrCasts.begin(), PtrCasts.end(), ptr_fun(DoEliminatePointerArithmetic)); #endif return Changed; }