//===- llvm/Transforms/DecomposeMultiDimRefs.cpp - Lower array refs to 1D -===// // // DecomposeMultiDimRefs - Convert multi-dimensional references consisting of // any combination of 2 or more array and structure indices into a sequence of // instructions (using getelementpr and cast) so that each instruction has at // most one index (except structure references, which need an extra leading // index of [0]). // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/DerivedTypes.h" #include "llvm/Constant.h" #include "llvm/iMemory.h" #include "llvm/iOther.h" #include "llvm/BasicBlock.h" #include "llvm/Pass.h" #include "Support/StatisticReporter.h" static Statistic<> NumAdded("lowerrefs\t\t- New instructions added"); namespace { struct DecomposePass : public BasicBlockPass { const char *getPassName() const { return "Decompose Subscripting Exps"; } virtual bool runOnBasicBlock(BasicBlock *BB); private: static void decomposeArrayRef(BasicBlock::iterator &BBI); }; } Pass *createDecomposeMultiDimRefsPass() { return new DecomposePass(); } // runOnBasicBlock - Entry point for array or structure references with multiple // indices. // bool DecomposePass::runOnBasicBlock(BasicBlock *BB) { bool Changed = false; for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ) { if (MemAccessInst *MAI = dyn_cast(*II)) { if (MAI->getNumOperands() > MAI->getFirstIndexOperandNumber()+1) { decomposeArrayRef(II); Changed = true; } else { ++II; } } else { ++II; } } return Changed; } // // For any combination of 2 or more array and structure indices, // this function repeats the foll. until we have a one-dim. reference: { // ptr1 = getElementPtr [CompositeType-N] * lastPtr, uint firstIndex // ptr2 = cast [CompositeType-N] * ptr1 to [CompositeType-N] * // } // Then it replaces the original instruction with an equivalent one that // uses the last ptr2 generated in the loop and a single index. // If any index is (uint) 0, we omit the getElementPtr instruction. // void DecomposePass::decomposeArrayRef(BasicBlock::iterator &BBI) { MemAccessInst *MAI = cast(*BBI); BasicBlock *BB = MAI->getParent(); Value *LastPtr = MAI->getPointerOperand(); // Remove the instruction from the stream BB->getInstList().remove(BBI); vector NewInsts; // Process each index except the last one. // User::const_op_iterator OI = MAI->idx_begin(), OE = MAI->idx_end(); for (; OI+1 != OE; ++OI) { assert(isa(LastPtr->getType())); // Check for a zero index. This will need a cast instead of // a getElementPtr, or it may need neither. bool indexIsZero = isa(*OI) && cast(*OI)->isNullValue() && (*OI)->getType() == Type::UIntTy; // Extract the first index. If the ptr is a pointer to a structure // and the next index is a structure offset (i.e., not an array offset), // we need to include an initial [0] to index into the pointer. // vector Indices; PointerType *PtrTy = cast(LastPtr->getType()); if (isa(PtrTy->getElementType()) && !PtrTy->indexValid(*OI)) Indices.push_back(Constant::getNullValue(Type::UIntTy)); Indices.push_back(*OI); // Get the type obtained by applying the first index. // It must be a structure or array. const Type *NextTy = MemAccessInst::getIndexedType(LastPtr->getType(), Indices, true); assert(isa(NextTy)); // Get a pointer to the structure or to the elements of the array. const Type *NextPtrTy = PointerType::get(isa(NextTy) ? NextTy : cast(NextTy)->getElementType()); // Instruction 1: nextPtr1 = GetElementPtr LastPtr, Indices // This is not needed if the index is zero. if (!indexIsZero) { LastPtr = new GetElementPtrInst(LastPtr, Indices, "ptr1"); NewInsts.push_back(cast(LastPtr)); ++NumAdded; } // Instruction 2: nextPtr2 = cast nextPtr1 to NextPtrTy // This is not needed if the two types are identical. // if (LastPtr->getType() != NextPtrTy) { LastPtr = new CastInst(LastPtr, NextPtrTy, "ptr2"); NewInsts.push_back(cast(LastPtr)); ++NumAdded; } } // // Now create a new instruction to replace the original one // PointerType *PtrTy = cast(LastPtr->getType()); // First, get the final index vector. As above, we may need an initial [0]. vector Indices; if (isa(PtrTy->getElementType()) && !PtrTy->indexValid(*OI)) Indices.push_back(Constant::getNullValue(Type::UIntTy)); Indices.push_back(*OI); Instruction *NewI = 0; switch(MAI->getOpcode()) { case Instruction::Load: NewI = new LoadInst(LastPtr, Indices, MAI->getName()); break; case Instruction::Store: NewI = new StoreInst(MAI->getOperand(0), LastPtr, Indices); break; case Instruction::GetElementPtr: NewI = new GetElementPtrInst(LastPtr, Indices, MAI->getName()); break; default: assert(0 && "Unrecognized memory access instruction"); } NewInsts.push_back(NewI); // Replace all uses of the old instruction with the new MAI->replaceAllUsesWith(NewI); // Now delete the old instruction... delete MAI; // Insert all of the new instructions... BBI = BB->getInstList().insert(BBI, NewInsts.begin(), NewInsts.end()); // Advance the iterator to the instruction following the one just inserted... BBI += NewInsts.size(); }