//===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "hexagon-pei" #include "HexagonFrameLowering.h" #include "Hexagon.h" #include "HexagonInstrInfo.h" #include "HexagonMachineFunctionInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "HexagonTargetMachine.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/IR/Function.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MachineLocation.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" // Hexagon stack frame layout as defined by the ABI: // // Incoming arguments // passed via stack // | // | // SP during function's FP during function's | // +-- runtime (top of stack) runtime (bottom) --+ | // | | | // --++---------------------+------------------+-----------------++-+------- // | parameter area for | variable-size | fixed-size |LR| arg // | called functions | local objects | local objects |FP| // --+----------------------+------------------+-----------------+--+------- // <- size known -> <- size unknown -> <- size known -> // // Low address High address // // <--- stack growth // // // - In any circumstances, the outgoing function arguments are always accessi- // ble using the SP, and the incoming arguments are accessible using the FP. // - If the local objects are not aligned, they can always be accessed using // the FP. // - If there are no variable-sized objects, the local objects can always be // accessed using the SP, regardless whether they are aligned or not. (The // alignment padding will be at the bottom of the stack (highest address), // and so the offset with respect to the SP will be known at the compile- // -time.) // // The only complication occurs if there are both, local aligned objects, and // dynamically allocated (variable-sized) objects. The alignment pad will be // placed between the FP and the local objects, thus preventing the use of the // FP to access the local objects. At the same time, the variable-sized objects // will be between the SP and the local objects, thus introducing an unknown // distance from the SP to the locals. // // To avoid this problem, a new register is created that holds the aligned // address of the bottom of the stack, referred in the sources as AP (aligned // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad // that aligns AP to the required boundary (a maximum of the alignments of // all stack objects, fixed- and variable-sized). All local objects[1] will // then use AP as the base pointer. // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get // their name from being allocated at fixed locations on the stack, relative // to the FP. In the presence of dynamic allocation and local alignment, such // objects can only be accessed through the FP. // // Illustration of the AP: // FP --+ // | // ---------------+---------------------+-----+-----------------------++-+-- // Rest of the | Local stack objects | Pad | Fixed stack objects |LR| // stack frame | (aligned) | | (CSR, spills, etc.) |FP| // ---------------+---------------------+-----+-----------------+-----+--+-- // |<-- Multiple of the -->| // stack alignment +-- AP // // The AP is set up at the beginning of the function. Since it is not a dedi- // cated (reserved) register, it needs to be kept live throughout the function // to be available as the base register for local object accesses. // Normally, an address of a stack objects is obtained by a pseudo-instruction // TFR_FI. To access local objects with the AP register present, a different // pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra // argument compared to TFR_FI: the first input register is the AP register. // This keeps the register live between its definition and its uses. // The AP register is originally set up using pseudo-instruction ALIGNA: // AP = ALIGNA A // where // A - required stack alignment // The alignment value must be the maximum of all alignments required by // any stack object. // The dynamic allocation uses a pseudo-instruction ALLOCA: // Rd = ALLOCA Rs, A // where // Rd - address of the allocated space // Rs - minimum size (the actual allocated can be larger to accommodate // alignment) // A - required alignment using namespace llvm; static cl::opt DisableDeallocRet( "disable-hexagon-dealloc-ret", cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); static cl::opt DisableProEpilogCodeMerge("disable-hexagon-prolog-epilog-code-merge", cl::Hidden, cl::desc("Disable prolog/epilog code merge"), cl::init(false), cl::ZeroOrMore); static cl::opt NumberScavengerSlots("number-scavenger-slots", cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2), cl::ZeroOrMore); static cl::opt SpillFuncThreshold("spill-func-threshold", cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"), cl::init(6), cl::ZeroOrMore); static cl::opt SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden, cl::desc("Specify Os spill func threshold"), cl::init(1), cl::ZeroOrMore); /// Map a register pair Reg to the subregister that has the greater "number", /// i.e. D3 (aka R7:6) will be mapped to R7, etc. static unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo *TRI, bool hireg = true) { if (Reg < Hexagon::D0 || Reg > Hexagon::D15) return Reg; unsigned RegNo = 0; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) if (hireg) { if (*SubRegs > RegNo) RegNo = *SubRegs; } else { if (!RegNo || *SubRegs < RegNo) RegNo = *SubRegs; } return RegNo; } /// Returns the biggest callee saved register in the vector. static unsigned getMaxCalleeSavedReg(const std::vector &CSI, const TargetRegisterInfo *TRI) { assert(Hexagon::R1 > 0 && "Assume physical registers are encoded as positive integers"); if (CSI.empty()) return 0; unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); for (unsigned I = 1, E = CSI.size(); I < E; ++I) { unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); if (Reg > Max) Max = Reg; } return Max; } void HexagonFrameLowering::emitPrologue(MachineFunction &MF) const { MachineBasicBlock &MBB = MF.front(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineModuleInfo &MMI = MF.getMMI(); MachineBasicBlock::iterator MBBI = MBB.begin(); auto &HTM = static_cast(MF.getTarget()); auto &HST = static_cast(MF.getSubtarget()); auto &HII = *HST.getInstrInfo(); auto &HRI = *HST.getRegisterInfo(); DebugLoc dl; unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment()); // Calculate the total stack frame size. // Get the number of bytes to allocate from the FrameInfo. unsigned FrameSize = MFI->getStackSize(); // Round up the max call frame size to the max alignment on the stack. unsigned MaxCFA = RoundUpToAlignment(MFI->getMaxCallFrameSize(), MaxAlign); MFI->setMaxCallFrameSize(MaxCFA); FrameSize = MaxCFA + RoundUpToAlignment(FrameSize, MaxAlign); MFI->setStackSize(FrameSize); bool AlignStack = (MaxAlign > 8); // Check if frame moves are needed for EH. bool needsFrameMoves = MMI.hasDebugInfo() || MF.getFunction()->needsUnwindTableEntry(); // Get the number of bytes to allocate from the FrameInfo. unsigned NumBytes = MFI->getStackSize(); unsigned SP = HRI.getStackRegister(); unsigned MaxCF = MFI->getMaxCallFrameSize(); MachineBasicBlock::iterator InsertPt = MBB.begin(); auto *FuncInfo = MF.getInfo(); auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts(); for (auto MI : AdjustRegs) { assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca"); expandAlloca(MI, HII, SP, MaxCF); MI->eraseFromParent(); } // // Only insert ALLOCFRAME if we need to or at -O0 for the debugger. Think // that this shouldn't be required, but doing so now because gcc does and // gdb can't break at the start of the function without it. Will remove if // this turns out to be a gdb bug. // bool NoOpt = (HTM.getOptLevel() == CodeGenOpt::None); if (!NoOpt && !FuncInfo->hasClobberLR() && !hasFP(MF)) return; // Check for overflow. // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? const unsigned int ALLOCFRAME_MAX = 16384; // Create a dummy memory operand to avoid allocframe from being treated as // a volatile memory reference. MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore, 4, 4); if (NumBytes >= ALLOCFRAME_MAX) { // Emit allocframe(#0). BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) .addImm(0) .addMemOperand(MMO); // Subtract offset from frame pointer. // We use a caller-saved non-parameter register for that. unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg(); BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real), CallerSavedReg).addImm(NumBytes); BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP). addReg(SP). addReg(CallerSavedReg); } else { BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) .addImm(NumBytes) .addMemOperand(MMO); } if (AlignStack) { BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) .addReg(SP) .addImm(-int64_t(MaxAlign)); } if (needsFrameMoves) { std::vector Instructions = MMI.getFrameInstructions(); MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol(); // Advance CFA. DW_CFA_def_cfa unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); // CFA = FP + 8 unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa( FrameLabel, DwFPReg, -8)); BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); // R31 (return addr) = CFA - #4 CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset( FrameLabel, DwRAReg, -4)); BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); // R30 (frame ptr) = CFA - #8) CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset( FrameLabel, DwFPReg, -8)); BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); unsigned int regsToMove[] = { Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2, Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, Hexagon::NoRegister }; const std::vector &CSI = MFI->getCalleeSavedInfo(); for (unsigned i = 0; regsToMove[i] != Hexagon::NoRegister; ++i) { for (unsigned I = 0, E = CSI.size(); I < E; ++I) { if (CSI[I].getReg() == regsToMove[i]) { // Subtract 8 to make room for R30 and R31, which are added above. int64_t Offset = getFrameIndexOffset(MF, CSI[I].getFrameIdx()) - 8; if (regsToMove[i] < Hexagon::D0 || regsToMove[i] > Hexagon::D15) { unsigned DwarfReg = HRI.getDwarfRegNum(regsToMove[i], true); unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createOffset(FrameLabel, DwarfReg, Offset)); BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } else { // Split the double regs into subregs, and generate appropriate // cfi_offsets. // The only reason, we are split double regs is, llvm-mc does not // understand paired registers for cfi_offset. // Eg .cfi_offset r1:0, -64 unsigned HiReg = getMax32BitSubRegister(regsToMove[i], &HRI); unsigned LoReg = getMax32BitSubRegister(regsToMove[i], &HRI, false); unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); unsigned HiCFIIndex = MMI.addFrameInst( MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, Offset+4)); BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(HiCFIIndex); unsigned LoCFIIndex = MMI.addFrameInst( MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, Offset)); BuildMI(MBB, MBBI, dl, HII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(LoCFIIndex); } break; } } // for CSI.size() } // for regsToMove } // needsFrameMoves } // Returns true if MBB has a machine instructions that indicates a tail call // in the block. bool HexagonFrameLowering::hasTailCall(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); unsigned RetOpcode = MBBI->getOpcode(); return RetOpcode == Hexagon::TCRETURNi || RetOpcode == Hexagon::TCRETURNr; } void HexagonFrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { // // Only insert deallocframe if we need to. Also at -O0. See comment // in emitPrologue above. // if (!hasFP(MF) && MF.getTarget().getOptLevel() != CodeGenOpt::None) return; auto &HST = static_cast(MF.getSubtarget()); auto &HII = *HST.getInstrInfo(); MachineBasicBlock::iterator MBBI = std::prev(MBB.end()); MachineBasicBlock::iterator MBBI_end = MBB.end(); DebugLoc dl = MBBI->getDebugLoc(); // Handle EH_RETURN. if (MBBI->getOpcode() == Hexagon::EH_RETURN_JMPR) { MachineOperand &OffsetReg = MBBI->getOperand(0); assert(OffsetReg.isReg() && "Offset should be in register!"); BuildMI(MBB, MBBI, dl, HII.get(Hexagon::L2_deallocframe)); BuildMI(MBB, MBBI, dl, HII.get(Hexagon::A2_add), Hexagon::R29).addReg(Hexagon::R29).addReg(Hexagon::R28); return; } // Replace 'jumpr r31' instruction with dealloc_return for V4 and higher // versions. if (MBBI->getOpcode() == Hexagon::JMPret && !DisableDeallocRet) { // Check for RESTORE_DEALLOC_RET_JMP_V4 call. Don't emit an extra DEALLOC // instruction if we encounter it. MachineBasicBlock::iterator BeforeJMPR = MBB.begin() == MBBI ? MBBI : std::prev(MBBI); if (BeforeJMPR != MBBI && BeforeJMPR->getOpcode() == Hexagon::RESTORE_DEALLOC_RET_JMP_V4) { // Remove the JMPR node. MBB.erase(MBBI); return; } // Add dealloc_return. MachineInstrBuilder MIB = BuildMI(MBB, MBBI_end, dl, HII.get(Hexagon::L4_return)); // Transfer the function live-out registers. MIB->copyImplicitOps(*MBB.getParent(), &*MBBI); // Remove the JUMPR node. MBB.erase(MBBI); } else { // Add deallocframe for tail calls. // Check for RESTORE_DEALLOC_BEFORE_TAILCALL_V4. We don't need an extra // L2_deallocframe instruction after it. MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); MachineBasicBlock::iterator I = Term == MBB.begin() ? MBB.end() : std::prev(Term); if (I != MBB.end() && I->getOpcode() == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4) return; BuildMI(MBB, MBBI, dl, HII.get(Hexagon::L2_deallocframe)); } } bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); const HexagonMachineFunctionInfo *FuncInfo = MF.getInfo(); return (MFI->hasCalls() || (MFI->getStackSize() > 0) || FuncInfo->hasClobberLR() ); } enum SpillKind { SK_ToMem, SK_FromMem, SK_FromMemTailcall }; static const char * getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType) { const char * V4SpillToMemoryFunctions[] = { "__save_r16_through_r17", "__save_r16_through_r19", "__save_r16_through_r21", "__save_r16_through_r23", "__save_r16_through_r25", "__save_r16_through_r27" }; const char * V4SpillFromMemoryFunctions[] = { "__restore_r16_through_r17_and_deallocframe", "__restore_r16_through_r19_and_deallocframe", "__restore_r16_through_r21_and_deallocframe", "__restore_r16_through_r23_and_deallocframe", "__restore_r16_through_r25_and_deallocframe", "__restore_r16_through_r27_and_deallocframe" }; const char * V4SpillFromMemoryTailcallFunctions[] = { "__restore_r16_through_r17_and_deallocframe_before_tailcall", "__restore_r16_through_r19_and_deallocframe_before_tailcall", "__restore_r16_through_r21_and_deallocframe_before_tailcall", "__restore_r16_through_r23_and_deallocframe_before_tailcall", "__restore_r16_through_r25_and_deallocframe_before_tailcall", "__restore_r16_through_r27_and_deallocframe_before_tailcall" }; const char **SpillFunc = nullptr; switch(SpillType) { case SK_ToMem: SpillFunc = V4SpillToMemoryFunctions; break; case SK_FromMem: SpillFunc = V4SpillFromMemoryFunctions; break; case SK_FromMemTailcall: SpillFunc = V4SpillFromMemoryTailcallFunctions; break; } assert(SpillFunc && "Unknown spill kind"); // Spill all callee-saved registers up to the highest register used. switch (MaxReg) { case Hexagon::R17: return SpillFunc[0]; case Hexagon::R19: return SpillFunc[1]; case Hexagon::R21: return SpillFunc[2]; case Hexagon::R23: return SpillFunc[3]; case Hexagon::R25: return SpillFunc[4]; case Hexagon::R27: return SpillFunc[5]; default: assert(false && "Unhandled maximum callee save register"); break; } return 0; } /// Adds all callee-saved registers up to MaxReg to the instruction. static void addCalleeSaveRegistersAsImpOperand(MachineInstr *Inst, unsigned MaxReg, bool IsDef) { // Add the callee-saved registers as implicit uses. for (unsigned R = Hexagon::R16; R <= MaxReg; ++R) { MachineOperand ImpUse = MachineOperand::CreateReg(R, IsDef, true); Inst->addOperand(ImpUse); } } /// Returns true if we have V4 operations, optimization level is equal to /// O2 or Os and exception handling is not required. static bool shouldOptimizeForSize(MachineFunction &MF) { if (MF.getInfo()->hasEHReturn()) return false; if (MF.getTarget().getOptLevel() == CodeGenOpt::Default) /* -O2 or -Os */ return true; const Function *F = MF.getFunction(); if (F->hasFnAttribute(Attribute::MinSize)) return true; return F->hasFnAttribute(Attribute::OptimizeForSize); } bool HexagonFrameLowering::spillCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI, const TargetRegisterInfo *TRI) const { MachineFunction *MF = MBB.getParent(); const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo(); const HexagonRegisterInfo *HRI = static_cast(TRI); if (CSI.empty()) { return false; } // Check whether we should emit a function call to spill the registers. bool ShouldOptimizeForSize = shouldOptimizeForSize(*MF); if (ShouldOptimizeForSize && !DisableProEpilogCodeMerge) { // We have different cut offs when we use callee saved stubs at -Os. bool HasOptimizeForSizeAttr = MF->getFunction()->getAttributes() .hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); unsigned CalleeSavedStubCutOff = HasOptimizeForSizeAttr ? SpillFuncThresholdOs : SpillFuncThreshold; // Use a function call if we have to spill registers. if (CSI.size() > CalleeSavedStubCutOff) { unsigned MaxReg = getMaxCalleeSavedReg(CSI, TRI); const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem); // Call spill function. DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); MachineInstr *SaveRegsCall = BuildMI(MBB, MI, DL, TII.get(Hexagon::SAVE_REGISTERS_CALL_V4)) .addExternalSymbol(SpillFun); // Add callee-saved registers as use. addCalleeSaveRegistersAsImpOperand(SaveRegsCall, MaxReg, false); // Add live in registers. for (unsigned I = 0; I < CSI.size(); ++I) MBB.addLiveIn(CSI[I].getReg()); return true; } } for (unsigned i = 0; i < CSI.size(); ++i) { unsigned Reg = CSI[i].getReg(); // Add live in registers. We treat eh_return callee saved register r0 - r3 // specially. They are not really callee saved registers as they are not // supposed to be killed. bool IsEHReturnCalleeSavedReg = HRI->isEHReturnCalleeSaveReg(Reg); if (HRI->isCalleeSaveReg(Reg)) { int FrameIdx = CSI[i].getFrameIdx(); const TargetRegisterClass *RegClass = TRI->getMinimalPhysRegClass(Reg); TII.storeRegToStackSlot(MBB, MI, Reg, !IsEHReturnCalleeSavedReg, FrameIdx, RegClass, TRI); if (!IsEHReturnCalleeSavedReg) MBB.addLiveIn(Reg); } else { const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.storeRegToStackSlot(MBB, MI, Reg, !IsEHReturnCalleeSavedReg, CSI[i].getFrameIdx(), RC, TRI); if (!IsEHReturnCalleeSavedReg) MBB.addLiveIn(Reg); } } return true; } bool HexagonFrameLowering::restoreCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI, const TargetRegisterInfo *TRI) const { MachineFunction *MF = MBB.getParent(); const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo(); if (CSI.empty()) { return false; } // Check whether we should emit a function call to spill the registers. bool ShouldOptimizeForSize = shouldOptimizeForSize(*MF); if (ShouldOptimizeForSize && !DisableProEpilogCodeMerge) { // We have different cut offs when we use callee saved stubs at -Os. bool HasOptimizeForSizeAttr = MF->getFunction()->getAttributes() .hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); unsigned CalleeSavedStubCutOff = HasOptimizeForSizeAttr ? (SpillFuncThresholdOs - 1) : SpillFuncThreshold; // Use a function call if we have to spill registers. if (CSI.size() > CalleeSavedStubCutOff) { bool IsTailCallBB = hasTailCall(MBB); unsigned MaxReg = getMaxCalleeSavedReg(CSI, TRI); const char *SpillFun = getSpillFunctionFor(MaxReg, IsTailCallBB ? SK_FromMemTailcall : SK_FromMem); // Call spill function. DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); MachineInstr *DeallocCall = nullptr; if (IsTailCallBB) { DeallocCall = BuildMI(MBB, MI, DL, TII.get(Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4)) .addExternalSymbol(SpillFun); } else { MachineBasicBlock::iterator JumprInst = std::prev(MBB.end()); assert(JumprInst->getOpcode() == Hexagon::JMPret); DeallocCall = BuildMI(MBB, MI, DL, TII.get(Hexagon::RESTORE_DEALLOC_RET_JMP_V4)) .addExternalSymbol(SpillFun); // Transfer the function live-out registers. DeallocCall->copyImplicitOps(*MBB.getParent(), JumprInst); } addCalleeSaveRegistersAsImpOperand(DeallocCall, MaxReg, true); return true; } } const HexagonRegisterInfo *HRI = static_cast(TRI); for (unsigned i = 0; i < CSI.size(); ++i) { unsigned Reg = CSI[i].getReg(); // Add live in registers. We treat eh_return callee saved register r0 - r3 // specially. They are not really callee saved registers as they are not // supposed to be killed. bool IsEHReturnCalleeSavedReg = HRI->isEHReturnCalleeSaveReg(Reg); if (HRI->isCalleeSaveReg(Reg)) { int FrameIdx = CSI[i].getFrameIdx(); const TargetRegisterClass *RegClass = TRI->getMinimalPhysRegClass(Reg); TII.loadRegFromStackSlot(MBB, MI, Reg, FrameIdx, RegClass, TRI); if (!IsEHReturnCalleeSavedReg) MBB.addLiveIn(Reg); } else { const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); if (!IsEHReturnCalleeSavedReg) MBB.addLiveIn(Reg); } } return true; } void HexagonFrameLowering:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { MachineInstr &MI = *I; unsigned Opc = MI.getOpcode(); assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && "Cannot handle this call frame pseudo instruction"); MBB.erase(I); } int HexagonFrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const { return MF.getFrameInfo()->getObjectOffset(FI); } void HexagonFrameLowering::processFunctionBeforeFrameFinalized( MachineFunction &MF, RegScavenger *RS) const { // If this function has uses aligned stack and also has variable sized stack // objects, then we need to map all spill slots to fixed positions, so that // they can be accessed through FP. Otherwise they would have to be accessed // via AP, which may not be available at the particular place in the program. MachineFrameInfo *MFI = MF.getFrameInfo(); bool HasAlloca = MFI->hasVarSizedObjects(); bool HasAligna = (MFI->getMaxAlignment() > getStackAlignment()); if (!HasAlloca || !HasAligna) return; unsigned LFS = MFI->getLocalFrameSize(); int Offset = -LFS; for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) { if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i)) continue; int S = MFI->getObjectSize(i); LFS += S; Offset -= S; MFI->mapLocalFrameObject(i, Offset); } MFI->setLocalFrameSize(LFS); unsigned A = MFI->getLocalFrameMaxAlign(); assert(A <= 8 && "Unexpected local frame alignment"); if (A == 0) MFI->setLocalFrameMaxAlign(8); MFI->setUseLocalStackAllocationBlock(true); } /// Returns true if there is no caller saved registers available. static bool needToReserveScavengingSpillSlots(MachineFunction &MF, const HexagonRegisterInfo &HRI) { MachineRegisterInfo &MRI = MF.getRegInfo(); const uint16_t *CallerSavedRegs = HRI.getCallerSavedRegs(&MF); // Check for an unused caller-saved register. for ( ; *CallerSavedRegs; ++CallerSavedRegs) { unsigned FreeReg = *CallerSavedRegs; if (MRI.isPhysRegUsed(FreeReg)) continue; // Check aliased register usage. bool IsCurrentRegUsed = false; for (MCRegAliasIterator AI(FreeReg, &HRI, false); AI.isValid(); ++AI) if (MRI.isPhysRegUsed(*AI)) { IsCurrentRegUsed = true; break; } if (IsCurrentRegUsed) continue; // Neither directly used nor used through an aliased register. return false; } // All caller-saved registers are used. return true; } /// Marks physical registers as used so that the callee-saved registers are /// always a multiple of two. void HexagonFrameLowering:: adjustForCalleeSavedRegsSpillCall(MachineFunction &MF) const { // We need to pretend that the callee-saved registers are a multiple of two // because there are only library functions to handle those cases. // (save_r16_to_17, save_r16_to_r19, ...) MachineRegisterInfo &MRI = MF.getRegInfo(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const uint16_t *CSRegs = TRI.getCalleeSavedRegs(&MF); // Compute the smallest and biggest callee-saved register used. unsigned Biggest = 0; unsigned Smallest = Hexagon::R31; unsigned NumUsed = 0; for (; *CSRegs; ++CSRegs){ unsigned CurrCSR = *CSRegs; if (MRI.isPhysRegUsed(CurrCSR)) { ++NumUsed; if (CurrCSR >= Biggest) Biggest = CurrCSR; if (CurrCSR <= Smallest) Smallest = CurrCSR; continue; } // Also check alias registers. for (MCRegAliasIterator AI(CurrCSR, &TRI, false); AI.isValid(); ++AI) { if (MRI.isPhysRegUsed(*AI)) { ++NumUsed; if (CurrCSR >= Biggest) Biggest = CurrCSR; if (CurrCSR <= Smallest) Smallest = CurrCSR; break; } } } // Don't do anything if the number of register used is zero. if (NumUsed == 0) return; // Ensure that the biggest register is r17, r19, ... if ((Biggest - Hexagon::R0) % 2 == 0) ++Biggest; assert(Smallest != Hexagon::R31 && "Should not happen"); // Make sure all the physical register are marked as used so that they are // assigned stack slots. for (unsigned I = Smallest; I <= Biggest; ++I) if (!MRI.isPhysRegUsed(I)) MRI.setPhysRegUsed(I); } /// Replaces the predicate spill code pseudo instructions by valid instructions. bool HexagonFrameLowering::replacePredRegPseudoSpillCode(MachineFunction &MF) const { auto &HST = static_cast(MF.getSubtarget()); auto &HII = *HST.getInstrInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); bool HasReplacedPseudoInst = false; // Replace predicate spill pseudo instructions by real code. // Loop over all of the basic blocks. for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end(); MBBb != MBBe; ++MBBb) { MachineBasicBlock* MBB = MBBb; // Traverse the basic block. MachineBasicBlock::iterator NextII; for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end(); MII = NextII) { MachineInstr *MI = MII; NextII = std::next(MII); int Opc = MI->getOpcode(); if (Opc == Hexagon::STriw_pred) { HasReplacedPseudoInst = true; // STriw_pred FI, 0, SrcReg; unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); unsigned SrcReg = MI->getOperand(2).getReg(); bool IsOrigSrcRegKilled = MI->getOperand(2).isKill(); assert(MI->getOperand(0).isFI() && "Expect a frame index"); assert(Hexagon::PredRegsRegClass.contains(SrcReg) && "Not a predicate register"); // Insert transfer to general purpose register. // VirtReg = C2_tfrpr SrcPredReg BuildMI(*MBB, MII, MI->getDebugLoc(), HII.get(Hexagon::C2_tfrpr), VirtReg).addReg(SrcReg, getKillRegState(IsOrigSrcRegKilled)); // Change instruction to S2_storeri_io. // S2_storeri_io FI, 0, VirtReg MI->setDesc(HII.get(Hexagon::S2_storeri_io)); MI->getOperand(2).setReg(VirtReg); MI->getOperand(2).setIsKill(); } else if (Opc == Hexagon::LDriw_pred) { // DstReg = LDriw_pred FI, 0 MachineOperand &M0 = MI->getOperand(0); if (M0.isDead()) { MBB->erase(MII); continue; } unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); unsigned DestReg = MI->getOperand(0).getReg(); assert(MI->getOperand(1).isFI() && "Expect a frame index"); assert(Hexagon::PredRegsRegClass.contains(DestReg) && "Not a predicate register"); // Change instruction to L2_loadri_io. // VirtReg = L2_loadri_io FI, 0 MI->setDesc(HII.get(Hexagon::L2_loadri_io)); MI->getOperand(0).setReg(VirtReg); // Insert transfer to general purpose register. // DestReg = C2_tfrrp VirtReg const MCInstrDesc &D = HII.get(Hexagon::C2_tfrrp); BuildMI(*MBB, std::next(MII), MI->getDebugLoc(), D, DestReg) .addReg(VirtReg, getKillRegState(true)); HasReplacedPseudoInst = true; } } } return HasReplacedPseudoInst; } void HexagonFrameLowering::processFunctionBeforeCalleeSavedScan( MachineFunction &MF, RegScavenger* RS) const { auto &HST = static_cast(MF.getSubtarget()); auto &HRI = *HST.getRegisterInfo(); bool HasEHReturn = MF.getInfo()->hasEHReturn(); // If we have a function containing __builtin_eh_return we want to spill and // restore all callee saved registers. Pretend that they are used. if (HasEHReturn) { MachineRegisterInfo &MRI = MF.getRegInfo(); for (const uint16_t *CSRegs = HRI.getCalleeSavedRegs(&MF); *CSRegs; ++CSRegs) if (!MRI.isPhysRegUsed(*CSRegs)) MRI.setPhysRegUsed(*CSRegs); } const TargetRegisterClass &RC = Hexagon::IntRegsRegClass; // Replace predicate register pseudo spill code. bool HasReplacedPseudoInst = replacePredRegPseudoSpillCode(MF); // We need to reserve a a spill slot if scavenging could potentially require // spilling a scavenged register. if (HasReplacedPseudoInst && needToReserveScavengingSpillSlots(MF, HRI)) { MachineFrameInfo *MFI = MF.getFrameInfo(); for (int i=0; i < NumberScavengerSlots; i++) RS->addScavengingFrameIndex( MFI->CreateSpillStackObject(RC.getSize(), RC.getAlignment())); } bool ShouldOptimizeForSize = shouldOptimizeForSize(MF); // Do nothing if we are not optimizing for size. if (!ShouldOptimizeForSize || DisableProEpilogCodeMerge) return; // Adjust the used callee save registers to be a multiple of two as there are // only library functions for them. adjustForCalleeSavedRegsSpillCall(MF); } bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, const TargetRegisterInfo *TRI, std::vector &CSI) const { const Function &F = *MF.getFunction(); DEBUG(dbgs() << __func__ << " on " << F.getName() << '\n'); MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned NR = TRI->getNumRegs(); BitVector SRegs(NR); // Generate a set of unique, callee-saved registers (SRegs), where each // register in the set is maximal in terms of sub-/super-register relation, // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. // 1a. For each callee-saved register, add that register to SRegs. DEBUG(dbgs() << "Initial CS registers: {"); for (unsigned i = 0, n = CSI.size(); i < n; ++i) { unsigned R = CSI[i].getReg(); DEBUG(dbgs() << ' ' << PrintReg(R, TRI)); for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) SRegs[*SR] = true; } DEBUG(dbgs() << " }\n"); // 1b. Collect all registers that have at least one sub-registers in SRegs. BitVector TmpSup(NR); for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { unsigned R = x; for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) TmpSup[*SR] = true; } // 1c. Out of all the super-registers found in 1b, add to SRegs those of // them, whose all sub-registers are already in SReg, or will be added to // SReg (i.e. are in TmpSup). // At the end of this step, the following will be true: // R \in SRegs => (if S is sub-register of R, then S \in SRegs) // S1..Sn = { sub-registers of R }, and S1..Sn \in SRegs => R \in SRegs for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { unsigned R = x; bool AllSub = true; for (MCSubRegIterator SR(R, TRI); SR.isValid(); ++SR) { if (SRegs[*SR] || TmpSup[*SR]) continue; AllSub = false; break; } // On Hexagon, a super-register is covered by its sub-registers. if (AllSub) SRegs[R] = true; } // 2. For each reserved register, remove that register and all of its // sub- and super-registers from SRegs. BitVector Reserved = TRI->getReservedRegs(MF); for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { unsigned R = x; for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) SRegs[*SR] = false; for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) SRegs[*SR] = false; } // 3. For each register R in SRegs, if any super-register of R is in SRegs, // remove R from SRegs. for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { unsigned R = x; for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) { if (!SRegs[*SR]) continue; SRegs[R] = false; break; } } // Now, for each register that has a fixed stack slot, create the stack // object for it. CSI.clear(); typedef TargetFrameLowering::SpillSlot SpillSlot; unsigned NumFixed; int MinOffset = 0; // CS offsets are negative. const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { if (!SRegs[S->Reg]) continue; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset); MinOffset = std::min(MinOffset, S->Offset); CSI.push_back(CalleeSavedInfo(S->Reg, FI)); SRegs[S->Reg] = false; } // There can be some registers that don't have fixed slots. For example, // we need to store R0-R3 in functions with exception handling. For each // such register, create a non-fixed stack object. for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { unsigned R = x; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); int Off = MinOffset - RC->getSize(); unsigned Align = std::min(RC->getAlignment(), getStackAlignment()); assert(isPowerOf2_32(Align)); Off &= -Align; int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off); MinOffset = std::min(MinOffset, Off); CSI.push_back(CalleeSavedInfo(R, FI)); SRegs[R] = false; } DEBUG({ dbgs() << "CS information: {"; for (unsigned i = 0, n = CSI.size(); i < n; ++i) { int FI = CSI[i].getFrameIdx(); int Off = MFI->getObjectOffset(FI); dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp"; if (Off >= 0) dbgs() << '+'; dbgs() << Off; } dbgs() << " }\n"; }); #ifndef NDEBUG // Verify that all registers were handled. bool MissedReg = false; for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { unsigned R = x; dbgs() << PrintReg(R, TRI) << ' '; MissedReg = true; } if (MissedReg) llvm_unreachable("...there are unhandled callee-saved registers!"); #endif return true; } void HexagonFrameLowering::expandAlloca(MachineInstr *AI, const HexagonInstrInfo &TII, unsigned SP, unsigned CF) const { MachineBasicBlock &MB = *AI->getParent(); DebugLoc DL = AI->getDebugLoc(); unsigned A = AI->getOperand(2).getImm(); // Have // Rd = alloca Rs, #A // // If Rs and Rd are different registers, use this sequence: // Rd = sub(r29, Rs) // r29 = sub(r29, Rs) // Rd = and(Rd, #-A) ; if necessary // r29 = and(r29, #-A) ; if necessary // Rd = add(Rd, #CF) ; CF size aligned to at most A // otherwise, do // Rd = sub(r29, Rs) // Rd = and(Rd, #-A) ; if necessary // r29 = Rd // Rd = add(Rd, #CF) ; CF size aligned to at most A MachineOperand &RdOp = AI->getOperand(0); MachineOperand &RsOp = AI->getOperand(1); unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg(); // Rd = sub(r29, Rs) BuildMI(MB, AI, DL, TII.get(Hexagon::A2_sub), Rd) .addReg(SP) .addReg(Rs); if (Rs != Rd) { // r29 = sub(r29, Rs) BuildMI(MB, AI, DL, TII.get(Hexagon::A2_sub), SP) .addReg(SP) .addReg(Rs); } if (A > 8) { // Rd = and(Rd, #-A) BuildMI(MB, AI, DL, TII.get(Hexagon::A2_andir), Rd) .addReg(Rd) .addImm(-int64_t(A)); if (Rs != Rd) BuildMI(MB, AI, DL, TII.get(Hexagon::A2_andir), SP) .addReg(SP) .addImm(-int64_t(A)); } if (Rs == Rd) { // r29 = Rd BuildMI(MB, AI, DL, TII.get(TargetOpcode::COPY), SP) .addReg(Rd); } if (CF > 0) { // Rd = add(Rd, #CF) BuildMI(MB, AI, DL, TII.get(Hexagon::A2_addi), Rd) .addReg(Rd) .addImm(CF); } } bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); if (!MFI->hasVarSizedObjects()) return false; unsigned MaxA = MFI->getMaxAlignment(); if (MaxA <= getStackAlignment()) return false; return true; } MachineInstr *HexagonFrameLowering::getAlignaInstr(MachineFunction &MF) const { for (auto &B : MF) for (auto &I : B) if (I.getOpcode() == Hexagon::ALIGNA) return &I; return nullptr; }