//===-- WriteInst.cpp - Functions for writing instructions -------*- C++ -*--=// // // This file implements the routines for encoding instruction opcodes to a // bytecode stream. // // Note that the performance of this library is not terribly important, because // it shouldn't be used by JIT type applications... so it is not a huge focus // at least. :) // //===----------------------------------------------------------------------===// #include "WriterInternals.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/iOther.h" #include "llvm/iTerminators.h" #include "Support/Statistic.h" #include static Statistic<> NumInstrs("bytecodewriter", "Number of instructions"); typedef unsigned char uchar; // outputInstructionFormat0 - Output those wierd instructions that have a large // number of operands or have large operands themselves... // // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg] // static void outputInstructionFormat0(const Instruction *I, const SlotCalculator &Table, unsigned Type, std::deque &Out) { // Opcode must have top two bits clear... output_vbr(I->getOpcode() << 2, Out); // Instruction Opcode ID output_vbr(Type, Out); // Result type unsigned NumArgs = I->getNumOperands(); output_vbr(NumArgs + isa(I), Out); for (unsigned i = 0; i < NumArgs; ++i) { int Slot = Table.getValSlot(I->getOperand(i)); assert(Slot >= 0 && "No slot number for value!?!?"); output_vbr((unsigned)Slot, Out); } if (isa(I)) { int Slot = Table.getValSlot(I->getType()); assert(Slot != -1 && "Cast return type unknown?"); output_vbr((unsigned)Slot, Out); } align32(Out); // We must maintain correct alignment! } // outputInstrVarArgsCall - Output the obsurdly annoying varargs function calls. // This are more annoying than most because the signature of the call does not // tell us anything about the types of the arguments in the varargs portion. // Because of this, we encode (as type 0) all of the argument types explicitly // before the argument value. This really sucks, but you shouldn't be using // varargs functions in your code! *death to printf*! // // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg] // static void outputInstrVarArgsCall(const Instruction *I, const SlotCalculator &Table, unsigned Type, std::deque &Out) { assert(isa(I) || isa(I)); // Opcode must have top two bits clear... output_vbr(I->getOpcode() << 2, Out); // Instruction Opcode ID output_vbr(Type, Out); // Result type (varargs type) unsigned NumArgs = I->getNumOperands(); output_vbr(NumArgs*2, Out); // TODO: Don't need to emit types for the fixed types of the varargs function // prototype... // The type for the function has already been emitted in the type field of the // instruction. Just emit the slot # now. int Slot = Table.getValSlot(I->getOperand(0)); assert(Slot >= 0 && "No slot number for value!?!?"); output_vbr((unsigned)Slot, Out); // Output a dummy field to fill Arg#2 in the reader that is currently unused // for varargs calls. This is a gross hack to make the code simpler, but we // aren't really doing very small bytecode for varargs calls anyways. // FIXME in the future: Smaller bytecode for varargs calls output_vbr(0, Out); for (unsigned i = 1; i < NumArgs; ++i) { // Output Arg Type ID Slot = Table.getValSlot(I->getOperand(i)->getType()); assert(Slot >= 0 && "No slot number for value!?!?"); output_vbr((unsigned)Slot, Out); // Output arg ID itself Slot = Table.getValSlot(I->getOperand(i)); assert(Slot >= 0 && "No slot number for value!?!?"); output_vbr((unsigned)Slot, Out); } align32(Out); // We must maintain correct alignment! } // outputInstructionFormat1 - Output one operand instructions, knowing that no // operand index is >= 2^12. // static void outputInstructionFormat1(const Instruction *I, const SlotCalculator &Table, int *Slots, unsigned Type, std::deque &Out) { unsigned Opcode = I->getOpcode(); // Instruction Opcode ID // bits Instruction format: // -------------------------- // 01-00: Opcode type, fixed to 1. // 07-02: Opcode // 19-08: Resulting type plane // 31-20: Operand #1 (if set to (2^12-1), then zero operands) // unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20); // cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl; output(Bits, Out); } // outputInstructionFormat2 - Output two operand instructions, knowing that no // operand index is >= 2^8. // static void outputInstructionFormat2(const Instruction *I, const SlotCalculator &Table, int *Slots, unsigned Type, std::deque &Out) { unsigned Opcode = I->getOpcode(); // Instruction Opcode ID // bits Instruction format: // -------------------------- // 01-00: Opcode type, fixed to 2. // 07-02: Opcode // 15-08: Resulting type plane // 23-16: Operand #1 // 31-24: Operand #2 // unsigned Bits = 2 | (Opcode << 2) | (Type << 8) | (Slots[0] << 16) | (Slots[1] << 24); // cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " // << Slots[1] << endl; output(Bits, Out); } // outputInstructionFormat3 - Output three operand instructions, knowing that no // operand index is >= 2^6. // static void outputInstructionFormat3(const Instruction *I, const SlotCalculator &Table, int *Slots, unsigned Type, std::deque &Out) { unsigned Opcode = I->getOpcode(); // Instruction Opcode ID // bits Instruction format: // -------------------------- // 01-00: Opcode type, fixed to 3. // 07-02: Opcode // 13-08: Resulting type plane // 19-14: Operand #1 // 25-20: Operand #2 // 31-26: Operand #3 // unsigned Bits = 3 | (Opcode << 2) | (Type << 8) | (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26); //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " // << Slots[1] << " " << Slots[2] << endl; output(Bits, Out); } void BytecodeWriter::processInstruction(const Instruction &I) { assert(I.getOpcode() < 64 && "Opcode too big???"); unsigned NumOperands = I.getNumOperands(); int MaxOpSlot = 0; int Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands for (unsigned i = 0; i < NumOperands; ++i) { const Value *Def = I.getOperand(i); int slot = Table.getValSlot(Def); assert(slot != -1 && "Broken bytecode!"); if (slot > MaxOpSlot) MaxOpSlot = slot; if (i < 3) Slots[i] = slot; } // Figure out which type to encode with the instruction. Typically we want // the type of the first parameter, as opposed to the type of the instruction // (for example, with setcc, we always know it returns bool, but the type of // the first param is actually interesting). But if we have no arguments // we take the type of the instruction itself. // const Type *Ty; switch (I.getOpcode()) { case Instruction::Malloc: case Instruction::Alloca: Ty = I.getType(); // Malloc & Alloca ALWAYS want to encode the return type break; case Instruction::Store: Ty = I.getOperand(1)->getType(); // Encode the pointer type... assert(isa(Ty) && "Store to nonpointer type!?!?"); break; default: // Otherwise use the default behavior... Ty = NumOperands ? I.getOperand(0)->getType() : I.getType(); break; } unsigned Type; int Slot = Table.getValSlot(Ty); assert(Slot != -1 && "Type not available!!?!"); Type = (unsigned)Slot; // Make sure that we take the type number into consideration. We don't want // to overflow the field size for the instruction format we select. // if (Slot > MaxOpSlot) MaxOpSlot = Slot; // Handle the special case for cast... if (isa(I)) { // Cast has to encode the destination type as the second argument in the // packet, or else we won't know what type to cast to! Slots[1] = Table.getValSlot(I.getType()); assert(Slots[1] != -1 && "Cast return type unknown?"); if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; NumOperands++; } else if (const CallInst *CI = dyn_cast(&I)){// Handle VarArg calls const PointerType *Ty = cast(CI->getCalledValue()->getType()); if (cast(Ty->getElementType())->isVarArg()) { outputInstrVarArgsCall(CI, Table, Type, Out); return; } } else if (const InvokeInst *II = dyn_cast(&I)) {// ... & Invokes const PointerType *Ty = cast(II->getCalledValue()->getType()); if (cast(Ty->getElementType())->isVarArg()) { outputInstrVarArgsCall(II, Table, Type, Out); return; } } ++NumInstrs; // Decide which instruction encoding to use. This is determined primarily by // the number of operands, and secondarily by whether or not the max operand // will fit into the instruction encoding. More operands == fewer bits per // operand. // switch (NumOperands) { case 0: case 1: if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops outputInstructionFormat1(&I, Table, Slots, Type, Out); return; } break; case 2: if (MaxOpSlot < (1 << 8)) { outputInstructionFormat2(&I, Table, Slots, Type, Out); return; } break; case 3: if (MaxOpSlot < (1 << 6)) { outputInstructionFormat3(&I, Table, Slots, Type, Out); return; } break; } // If we weren't handled before here, we either have a large number of // operands or a large operand index that we are refering to. outputInstructionFormat0(&I, Table, Type, Out); }