//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===// // // This file implements the LiveVariable analysis pass. For each machine // instruction in the function, this pass calculates the set of registers that // are immediately dead after the instruction (i.e., the instruction calculates // the value, but it is never used) and the set of registers that are used by // the instruction, but are never used after the instruction (i.e., they are // killed). // // This class computes live variables using are sparse implementation based on // the machine code SSA form. This class computes live variable information for // each virtual and _register allocatable_ physical register in a function. It // uses the dominance properties of SSA form to efficiently compute live // variables for virtual registers, and assumes that physical registers are only // live within a single basic block (allowing it to do a single local analysis // to resolve physical register lifetimes in each basic block). If a physical // register is not register allocatable, it is not tracked. This is useful for // things like the stack pointer and condition codes. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVEVARIABLES_H #define LLVM_CODEGEN_LIVEVARIABLES_H #include "llvm/CodeGen/MachineFunctionPass.h" #include class MRegisterInfo; class LiveVariables : public MachineFunctionPass { struct VarInfo { /// DefBlock - The basic block which defines this value... MachineBasicBlock *DefBlock; MachineInstr *DefInst; /// AliveBlocks - Set of blocks of which this value is alive completely /// through. This is a bit set which uses the basic block number as an /// index. /// std::vector AliveBlocks; /// Kills - List of MachineBasicblock's which contain the last use of this /// virtual register (kill it). This also includes the specific instruction /// which kills the value. /// std::vector > Kills; VarInfo() : DefBlock(0), DefInst(0) {} }; /// VirtRegInfo - This list is a mapping from virtual register number to /// variable information. FirstVirtualRegister is subtracted from the virtual /// register number before indexing into this list. /// std::vector VirtRegInfo; /// RegistersKilled - This multimap keeps track of all of the registers that /// are dead immediately after an instruction reads its operands. If an /// instruction does not have an entry in this map, it kills no registers. /// std::multimap RegistersKilled; /// RegistersDead - This multimap keeps track of all of the registers that are /// dead immediately after an instruction executes, which are not dead after /// the operands are evaluated. In practice, this only contains registers /// which are defined by an instruction, but never used. /// std::multimap RegistersDead; /// AllocatablePhysicalRegisters - This vector keeps track of which registers /// are actually register allocatable by the target machine. We can not track /// liveness for values that are not in this set. /// std::vector AllocatablePhysicalRegisters; private: // Intermediate data structures /// BBMap - Maps LLVM basic blocks to their corresponding machine basic block. /// This also provides a numbering of the basic blocks in the function. std::map > BBMap; const MRegisterInfo *RegInfo; MachineInstr **PhysRegInfo; bool *PhysRegUsed; public: virtual bool runOnMachineFunction(MachineFunction &MF); /// killed_iterator - Iterate over registers killed by a machine instruction /// typedef std::multimap::iterator killed_iterator; /// killed_begin/end - Get access to the range of registers killed by a /// machine instruction. killed_iterator killed_begin(MachineInstr *MI) { return RegistersKilled.lower_bound(MI); } killed_iterator killed_end(MachineInstr *MI) { return RegistersKilled.upper_bound(MI); } std::pair killed_range(MachineInstr *MI) { return RegistersKilled.equal_range(MI); } killed_iterator dead_begin(MachineInstr *MI) { return RegistersDead.lower_bound(MI); } killed_iterator dead_end(MachineInstr *MI) { return RegistersDead.upper_bound(MI); } std::pair dead_range(MachineInstr *MI) { return RegistersDead.equal_range(MI); } //===--------------------------------------------------------------------===// // API to update live variable information /// addVirtualRegisterKilled - Add information about the fact that the /// specified register is killed after being used by the specified /// instruction. /// void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI) { RegistersKilled.insert(std::make_pair(MI, IncomingReg)); } /// removeVirtualRegistersKilled - Remove all of the specified killed /// registers from the live variable information. void removeVirtualRegistersKilled(killed_iterator B, killed_iterator E) { RegistersKilled.erase(B, E); } /// addVirtualRegisterDead - Add information about the fact that the specified /// register is dead after being used by the specified instruction. /// void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI) { RegistersDead.insert(std::make_pair(MI, IncomingReg)); } /// removeVirtualRegistersKilled - Remove all of the specified killed /// registers from the live variable information. void removeVirtualRegistersDead(killed_iterator B, killed_iterator E) { RegistersDead.erase(B, E); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } virtual void releaseMemory() { VirtRegInfo.clear(); RegistersKilled.clear(); RegistersDead.clear(); } private: VarInfo &getVarInfo(unsigned RegIdx) { if (RegIdx >= VirtRegInfo.size()) { if (RegIdx >= 2*VirtRegInfo.size()) VirtRegInfo.resize(RegIdx*2); else VirtRegInfo.resize(2*VirtRegInfo.size()); } return VirtRegInfo[RegIdx]; } void MarkVirtRegAliveInBlock(VarInfo &VRInfo, const BasicBlock *BB); void HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, MachineInstr *MI); void HandlePhysRegUse(unsigned Reg, MachineInstr *MI); void HandlePhysRegDef(unsigned Reg, MachineInstr *MI); }; #endif