//===-- X86AsmPrinter.cpp - Convert X86 LLVM code to Intel assembly -------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to Intel-format assembly language. This // printer is the output mechanism used by `llc' and `lli -print-machineinstrs' // on X86. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrInfo.h" #include "X86TargetMachine.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Mangler.h" #include "Support/Statistic.h" #include "Support/StringExtras.h" #include "Support/CommandLine.h" using namespace llvm; namespace { Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); // FIXME: This should be automatically picked up by autoconf from the C // frontend cl::opt EmitCygwin("enable-cygwin-compatible-output", cl::Hidden, cl::desc("Emit X86 assembly code suitable for consumption by cygwin")); struct GasBugWorkaroundEmitter : public MachineCodeEmitter { GasBugWorkaroundEmitter(std::ostream& o) : O(o), OldFlags(O.flags()), firstByte(true) { O << std::hex; } ~GasBugWorkaroundEmitter() { O.flags(OldFlags); } virtual void emitByte(unsigned char B) { if (!firstByte) O << "\n\t"; firstByte = false; O << ".byte 0x" << (unsigned) B; } // These should never be called virtual void emitWord(unsigned W) { assert(0); } virtual uint64_t getGlobalValueAddress(GlobalValue *V) { abort(); } virtual uint64_t getGlobalValueAddress(const std::string &Name) { abort(); } virtual uint64_t getConstantPoolEntryAddress(unsigned Index) { abort(); } virtual uint64_t getCurrentPCValue() { abort(); } virtual uint64_t forceCompilationOf(Function *F) { abort(); } private: std::ostream& O; std::ios::fmtflags OldFlags; bool firstByte; }; struct X86AsmPrinter : public MachineFunctionPass { /// Output stream on which we're printing assembly code. /// std::ostream &O; /// Target machine description which we query for reg. names, data /// layout, etc. /// TargetMachine &TM; /// Name-mangler for global names. /// Mangler *Mang; X86AsmPrinter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { } /// Cache of mangled name for current function. This is /// recalculated at the beginning of each call to /// runOnMachineFunction(). /// std::string CurrentFnName; virtual const char *getPassName() const { return "X86 Assembly Printer"; } /// printInstruction - This method is automatically generated by tablegen /// from the instruction set description. This method returns true if the /// machine instruction was sufficiently described to print it, otherwise it /// returns false. bool printInstruction(const MachineInstr *MI); // This method is used by the tablegen'erated instruction printer. void printOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT) { const MachineOperand &MO = MI->getOperand(OpNo); if (MO.getType() == MachineOperand::MO_MachineRegister) { assert(MRegisterInfo::isPhysicalRegister(MO.getReg())&&"Not physref??"); // Bug Workaround: See note in Printer::doInitialization about %. O << "%" << TM.getRegisterInfo()->get(MO.getReg()).Name; } else { printOp(MO); } } void printCallOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT) { printOp(MI->getOperand(OpNo), true); // Don't print "OFFSET". } void printMemoryOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT) { switch (VT) { default: assert(0 && "Unknown arg size!"); case MVT::i8: O << "BYTE PTR "; break; case MVT::i16: O << "WORD PTR "; break; case MVT::i32: case MVT::f32: O << "DWORD PTR "; break; case MVT::i64: case MVT::f64: O << "QWORD PTR "; break; case MVT::f80: O << "XWORD PTR "; break; } printMemReference(MI, OpNo); } void printMachineInstruction(const MachineInstr *MI); void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false); void printMemReference(const MachineInstr *MI, unsigned Op); void printConstantPool(MachineConstantPool *MCP); bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); void emitGlobalConstant(const Constant* CV); void emitConstantValueOnly(const Constant *CV); }; } // end of anonymous namespace /// createX86CodePrinterPass - Returns a pass that prints the X86 /// assembly code for a MachineFunction to the given output stream, /// using the given target machine description. This should work /// regardless of whether the function is in SSA form. /// FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){ return new X86AsmPrinter(o, tm); } // Include the auto-generated portion of the assembly writer. #include "X86GenAsmWriter.inc" /// toOctal - Convert the low order bits of X into an octal digit. /// static inline char toOctal(int X) { return (X&7)+'0'; } /// getAsCString - Return the specified array as a C compatible /// string, only if the predicate isStringCompatible is true. /// static void printAsCString(std::ostream &O, const ConstantArray *CVA) { assert(CVA->isString() && "Array is not string compatible!"); O << "\""; for (unsigned i = 0; i != CVA->getNumOperands(); ++i) { unsigned char C = cast(CVA->getOperand(i))->getRawValue(); if (C == '"') { O << "\\\""; } else if (C == '\\') { O << "\\\\"; } else if (isprint(C)) { O << C; } else { switch(C) { case '\b': O << "\\b"; break; case '\f': O << "\\f"; break; case '\n': O << "\\n"; break; case '\r': O << "\\r"; break; case '\t': O << "\\t"; break; default: O << '\\'; O << toOctal(C >> 6); O << toOctal(C >> 3); O << toOctal(C >> 0); break; } } } O << "\""; } // Print out the specified constant, without a storage class. Only the // constants valid in constant expressions can occur here. void X86AsmPrinter::emitConstantValueOnly(const Constant *CV) { if (CV->isNullValue()) O << "0"; else if (const ConstantBool *CB = dyn_cast(CV)) { assert(CB == ConstantBool::True); O << "1"; } else if (const ConstantSInt *CI = dyn_cast(CV)) if (((CI->getValue() << 32) >> 32) == CI->getValue()) O << CI->getValue(); else O << (unsigned long long)CI->getValue(); else if (const ConstantUInt *CI = dyn_cast(CV)) O << CI->getValue(); else if (const GlobalValue *GV = dyn_cast(CV)) // This is a constant address for a global variable or function. Use the // name of the variable or function as the address value. O << Mang->getValueName(GV); else if (const ConstantExpr *CE = dyn_cast(CV)) { const TargetData &TD = TM.getTargetData(); switch(CE->getOpcode()) { case Instruction::GetElementPtr: { // generate a symbolic expression for the byte address const Constant *ptrVal = CE->getOperand(0); std::vector idxVec(CE->op_begin()+1, CE->op_end()); if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) { O << "("; emitConstantValueOnly(ptrVal); O << ") + " << Offset; } else { emitConstantValueOnly(ptrVal); } break; } case Instruction::Cast: { // Support only non-converting or widening casts for now, that is, ones // that do not involve a change in value. This assertion is really gross, // and may not even be a complete check. Constant *Op = CE->getOperand(0); const Type *OpTy = Op->getType(), *Ty = CE->getType(); // Remember, kids, pointers on x86 can be losslessly converted back and // forth into 32-bit or wider integers, regardless of signedness. :-P assert(((isa(OpTy) && (Ty == Type::LongTy || Ty == Type::ULongTy || Ty == Type::IntTy || Ty == Type::UIntTy)) || (isa(Ty) && (OpTy == Type::LongTy || OpTy == Type::ULongTy || OpTy == Type::IntTy || OpTy == Type::UIntTy)) || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy)) && OpTy->isLosslesslyConvertibleTo(Ty)))) && "FIXME: Don't yet support this kind of constant cast expr"); O << "("; emitConstantValueOnly(Op); O << ")"; break; } case Instruction::Add: O << "("; emitConstantValueOnly(CE->getOperand(0)); O << ") + ("; emitConstantValueOnly(CE->getOperand(1)); O << ")"; break; default: assert(0 && "Unsupported operator!"); } } else { assert(0 && "Unknown constant value!"); } } // Print a constant value or values, with the appropriate storage class as a // prefix. void X86AsmPrinter::emitGlobalConstant(const Constant *CV) { const TargetData &TD = TM.getTargetData(); if (CV->isNullValue()) { O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n"; return; } else if (const ConstantArray *CVA = dyn_cast(CV)) { if (CVA->isString()) { O << "\t.ascii\t"; printAsCString(O, CVA); O << "\n"; } else { // Not a string. Print the values in successive locations for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) emitGlobalConstant(CVA->getOperand(i)); } return; } else if (const ConstantStruct *CVS = dyn_cast(CV)) { // Print the fields in successive locations. Pad to align if needed! const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType()); unsigned sizeSoFar = 0; for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { const Constant* field = CVS->getOperand(i); // Check if padding is needed and insert one or more 0s. unsigned fieldSize = TD.getTypeSize(field->getType()); unsigned padSize = ((i == e-1? cvsLayout->StructSize : cvsLayout->MemberOffsets[i+1]) - cvsLayout->MemberOffsets[i]) - fieldSize; sizeSoFar += fieldSize + padSize; // Now print the actual field value emitGlobalConstant(field); // Insert the field padding unless it's zero bytes... if (padSize) O << "\t.zero\t " << padSize << "\n"; } assert(sizeSoFar == cvsLayout->StructSize && "Layout of constant struct may be incorrect!"); return; } else if (const ConstantFP *CFP = dyn_cast(CV)) { // FP Constants are printed as integer constants to avoid losing // precision... double Val = CFP->getValue(); switch (CFP->getType()->getTypeID()) { default: assert(0 && "Unknown floating point type!"); case Type::FloatTyID: { union FU { // Abide by C TBAA rules float FVal; unsigned UVal; } U; U.FVal = Val; O << ".long\t" << U.UVal << "\t# float " << Val << "\n"; return; } case Type::DoubleTyID: { union DU { // Abide by C TBAA rules double FVal; uint64_t UVal; } U; U.FVal = Val; O << ".quad\t" << U.UVal << "\t# double " << Val << "\n"; return; } } } const Type *type = CV->getType(); O << "\t"; switch (type->getTypeID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: O << ".byte"; break; case Type::UShortTyID: case Type::ShortTyID: O << ".word"; break; case Type::FloatTyID: case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: O << ".long"; break; case Type::DoubleTyID: case Type::ULongTyID: case Type::LongTyID: O << ".quad"; break; default: assert (0 && "Can't handle printing this type of thing"); break; } O << "\t"; emitConstantValueOnly(CV); O << "\n"; } /// printConstantPool - Print to the current output stream assembly /// representations of the constants in the constant pool MCP. This is /// used to print out constants which have been "spilled to memory" by /// the code generator. /// void X86AsmPrinter::printConstantPool(MachineConstantPool *MCP) { const std::vector &CP = MCP->getConstants(); const TargetData &TD = TM.getTargetData(); if (CP.empty()) return; for (unsigned i = 0, e = CP.size(); i != e; ++i) { O << "\t.section .rodata\n"; O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) << "\n"; O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#" << *CP[i] << "\n"; emitGlobalConstant(CP[i]); } } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) { O << "\n\n"; // What's my mangled name? CurrentFnName = Mang->getValueName(MF.getFunction()); // Print out constants referenced by the function printConstantPool(MF.getConstantPool()); // Print out labels for the function. O << "\t.text\n"; O << "\t.align 16\n"; O << "\t.globl\t" << CurrentFnName << "\n"; if (!EmitCygwin) O << "\t.type\t" << CurrentFnName << ", @function\n"; O << CurrentFnName << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# " << I->getBasicBlock()->getName() << "\n"; for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printMachineInstruction(II); } } // We didn't modify anything. return false; } static bool isScale(const MachineOperand &MO) { return MO.isImmediate() && (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 || MO.getImmedValue() == 4 || MO.getImmedValue() == 8); } static bool isMem(const MachineInstr *MI, unsigned Op) { if (MI->getOperand(Op).isFrameIndex()) return true; if (MI->getOperand(Op).isConstantPoolIndex()) return true; return Op+4 <= MI->getNumOperands() && MI->getOperand(Op ).isRegister() && isScale(MI->getOperand(Op+1)) && MI->getOperand(Op+2).isRegister() && MI->getOperand(Op+3).isImmediate(); } void X86AsmPrinter::printOp(const MachineOperand &MO, bool elideOffsetKeyword /* = false */) { const MRegisterInfo &RI = *TM.getRegisterInfo(); switch (MO.getType()) { case MachineOperand::MO_VirtualRegister: if (Value *V = MO.getVRegValueOrNull()) { O << "<" << V->getName() << ">"; return; } // FALLTHROUGH case MachineOperand::MO_MachineRegister: if (MRegisterInfo::isPhysicalRegister(MO.getReg())) // Bug Workaround: See note in Printer::doInitialization about %. O << "%" << RI.get(MO.getReg()).Name; else O << "%reg" << MO.getReg(); return; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: O << (int)MO.getImmedValue(); return; case MachineOperand::MO_MachineBasicBlock: { MachineBasicBlock *MBBOp = MO.getMachineBasicBlock(); O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction()) << "_" << MBBOp->getNumber () << "\t# " << MBBOp->getBasicBlock ()->getName (); return; } case MachineOperand::MO_PCRelativeDisp: std::cerr << "Shouldn't use addPCDisp() when building X86 MachineInstrs"; abort (); return; case MachineOperand::MO_GlobalAddress: if (!elideOffsetKeyword) O << "OFFSET "; O << Mang->getValueName(MO.getGlobal()); return; case MachineOperand::MO_ExternalSymbol: O << MO.getSymbolName(); return; default: O << ""; return; } } void X86AsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op) { assert(isMem(MI, Op) && "Invalid memory reference!"); if (MI->getOperand(Op).isFrameIndex()) { O << "[frame slot #" << MI->getOperand(Op).getFrameIndex(); if (MI->getOperand(Op+3).getImmedValue()) O << " + " << MI->getOperand(Op+3).getImmedValue(); O << "]"; return; } else if (MI->getOperand(Op).isConstantPoolIndex()) { O << "[.CPI" << CurrentFnName << "_" << MI->getOperand(Op).getConstantPoolIndex(); if (MI->getOperand(Op+3).getImmedValue()) O << " + " << MI->getOperand(Op+3).getImmedValue(); O << "]"; return; } const MachineOperand &BaseReg = MI->getOperand(Op); int ScaleVal = MI->getOperand(Op+1).getImmedValue(); const MachineOperand &IndexReg = MI->getOperand(Op+2); int DispVal = MI->getOperand(Op+3).getImmedValue(); O << "["; bool NeedPlus = false; if (BaseReg.getReg()) { printOp(BaseReg); NeedPlus = true; } if (IndexReg.getReg()) { if (NeedPlus) O << " + "; if (ScaleVal != 1) O << ScaleVal << "*"; printOp(IndexReg); NeedPlus = true; } if (DispVal) { if (NeedPlus) if (DispVal > 0) O << " + "; else { O << " - "; DispVal = -DispVal; } O << DispVal; } O << "]"; } /// printMachineInstruction -- Print out a single X86 LLVM instruction /// MI in Intel syntax to the current output stream. /// void X86AsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; // gas bugs: // // The 80-bit FP store-pop instruction "fstp XWORD PTR [...]" is misassembled // by gas in intel_syntax mode as its 32-bit equivalent "fstp DWORD PTR // [...]". Workaround: Output the raw opcode bytes instead of the instruction. // // The 80-bit FP load instruction "fld XWORD PTR [...]" is misassembled by gas // in intel_syntax mode as its 32-bit equivalent "fld DWORD PTR // [...]". Workaround: Output the raw opcode bytes instead of the instruction. // // gas intel_syntax mode treats "fild QWORD PTR [...]" as an invalid opcode, // saying "64 bit operations are only supported in 64 bit modes." libopcodes // disassembles it as "fild DWORD PTR [...]", which is wrong. Workaround: // Output the raw opcode bytes instead of the instruction. // // gas intel_syntax mode treats "fistp QWORD PTR [...]" as an invalid opcode, // saying "64 bit operations are only supported in 64 bit modes." libopcodes // disassembles it as "fistpll DWORD PTR [...]", which is wrong. Workaround: // Output the raw opcode bytes instead of the instruction. switch (MI->getOpcode()) { case X86::FSTP80m: case X86::FLD80m: case X86::FILD64m: case X86::FISTP64m: GasBugWorkaroundEmitter gwe(O); X86::emitInstruction(gwe, (X86InstrInfo&)*TM.getInstrInfo(), *MI); O << "\t# "; } // Call the autogenerated instruction printer routines. bool Handled = printInstruction(MI); if (!Handled) { MI->dump(); assert(0 && "Do not know how to print this instruction!"); abort(); } } bool X86AsmPrinter::doInitialization(Module &M) { // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly. // // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an // instruction as a reference to the register named sp, and if you try to // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased // before being looked up in the symbol table. This creates spurious // `undefined symbol' errors when linking. Workaround: Do not use `noprefix' // mode, and decorate all register names with percent signs. O << "\t.intel_syntax\n"; Mang = new Mangler(M, EmitCygwin); return false; // success } // SwitchSection - Switch to the specified section of the executable if we are // not already in it! // static void SwitchSection(std::ostream &OS, std::string &CurSection, const char *NewSection) { if (CurSection != NewSection) { CurSection = NewSection; if (!CurSection.empty()) OS << "\t" << NewSection << "\n"; } } bool X86AsmPrinter::doFinalization(Module &M) { const TargetData &TD = TM.getTargetData(); std::string CurSection; // Print out module-level global variables here. for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) if (I->hasInitializer()) { // External global require no code O << "\n\n"; std::string name = Mang->getValueName(I); Constant *C = I->getInitializer(); unsigned Size = TD.getTypeSize(C->getType()); unsigned Align = TD.getTypeAlignment(C->getType()); if (C->isNullValue() && (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || I->hasWeakLinkage() /* FIXME: Verify correct */)) { SwitchSection(O, CurSection, ".data"); if (I->hasInternalLinkage()) O << "\t.local " << name << "\n"; O << "\t.comm " << name << "," << TD.getTypeSize(C->getType()) << "," << (unsigned)TD.getTypeAlignment(C->getType()); O << "\t\t# "; WriteAsOperand(O, I, true, true, &M); O << "\n"; } else { switch (I->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. // Nonnull linkonce -> weak O << "\t.weak " << name << "\n"; SwitchSection(O, CurSection, ""); O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n"; break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << "\n"; // FALL THROUGH case GlobalValue::InternalLinkage: if (C->isNullValue()) SwitchSection(O, CurSection, ".bss"); else SwitchSection(O, CurSection, ".data"); break; } O << "\t.align " << Align << "\n"; O << "\t.type " << name << ",@object\n"; O << "\t.size " << name << "," << Size << "\n"; O << name << ":\t\t\t\t# "; WriteAsOperand(O, I, true, true, &M); O << " = "; WriteAsOperand(O, C, false, false, &M); O << "\n"; emitGlobalConstant(C); } } delete Mang; return false; // success }