//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by James M. Laskey and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a simple two pass scheduler. The first pass attempts to push // backward any lengthy instructions and critical paths. The second pass packs // instructions into semi-optimal time slots. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetInstrItineraries.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Support/Debug.h" #include "llvm/Constant.h" #include using namespace llvm; /// CountResults - The results of target nodes have register or immediate /// operands first, then an optional chain, and optional flag operands (which do /// not go into the machine instrs.) static unsigned CountResults(SDNode *Node) { unsigned N = Node->getNumValues(); while (N && Node->getValueType(N - 1) == MVT::Flag) --N; if (N && Node->getValueType(N - 1) == MVT::Other) --N; // Skip over chain result. return N; } /// CountOperands The inputs to target nodes have any actual inputs first, /// followed by an optional chain operand, then flag operands. Compute the /// number of actual operands that will go into the machine instr. static unsigned CountOperands(SDNode *Node) { unsigned N = Node->getNumOperands(); while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) --N; if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) --N; // Ignore chain if it exists. return N; } /// PrepareNodeInfo - Set up the basic minimum node info for scheduling. /// void ScheduleDAG::PrepareNodeInfo() { // Allocate node information Info = new NodeInfo[NodeCount]; unsigned i = 0; for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = DAG.allnodes_end(); I != E; ++I, ++i) { // Fast reference to node schedule info NodeInfo* NI = &Info[i]; // Set up map Map[I] = NI; // Set node NI->Node = I; // Set pending visit count NI->setPending(I->use_size()); } } /// IdentifyGroups - Put flagged nodes into groups. /// void ScheduleDAG::IdentifyGroups() { for (unsigned i = 0, N = NodeCount; i < N; i++) { NodeInfo* NI = &Info[i]; SDNode *Node = NI->Node; // For each operand (in reverse to only look at flags) for (unsigned N = Node->getNumOperands(); 0 < N--;) { // Get operand SDOperand Op = Node->getOperand(N); // No more flags to walk if (Op.getValueType() != MVT::Flag) break; // Add to node group AddToGroup(getNI(Op.Val), NI); // Let everyone else know HasGroups = true; } } } static unsigned CreateVirtualRegisters(MachineInstr *MI, unsigned NumResults, SSARegMap *RegMap, const TargetInstrDescriptor &II) { // Create the result registers for this node and add the result regs to // the machine instruction. const TargetOperandInfo *OpInfo = II.OpInfo; unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass); MI->addRegOperand(ResultReg, MachineOperand::Def); for (unsigned i = 1; i != NumResults; ++i) { assert(OpInfo[i].RegClass && "Isn't a register operand!"); MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[i].RegClass), MachineOperand::Def); } return ResultReg; } /// AddOperand - Add the specified operand to the specified machine instr. II /// specifies the instruction information for the node, and IIOpNum is the /// operand number (in the II) that we are adding. IIOpNum and II are used for /// assertions only. void ScheduleDAG::AddOperand(MachineInstr *MI, SDOperand Op, unsigned IIOpNum, const TargetInstrDescriptor *II) { if (Op.isTargetOpcode()) { // Note that this case is redundant with the final else block, but we // include it because it is the most common and it makes the logic // simpler here. assert(Op.getValueType() != MVT::Other && Op.getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); // Get/emit the operand. unsigned VReg = getVR(Op); MI->addRegOperand(VReg, MachineOperand::Use); // Verify that it is right. assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); if (II) { assert(II->OpInfo[IIOpNum].RegClass && "Don't have operand info for this instruction!"); assert(RegMap->getRegClass(VReg) == II->OpInfo[IIOpNum].RegClass && "Register class of operand and regclass of use don't agree!"); } } else if (ConstantSDNode *C = dyn_cast(Op)) { MI->addZeroExtImm64Operand(C->getValue()); } else if (RegisterSDNode*R = dyn_cast(Op)) { MI->addRegOperand(R->getReg(), MachineOperand::Use); } else if (GlobalAddressSDNode *TGA = dyn_cast(Op)) { MI->addGlobalAddressOperand(TGA->getGlobal(), false, TGA->getOffset()); } else if (BasicBlockSDNode *BB = dyn_cast(Op)) { MI->addMachineBasicBlockOperand(BB->getBasicBlock()); } else if (FrameIndexSDNode *FI = dyn_cast(Op)) { MI->addFrameIndexOperand(FI->getIndex()); } else if (ConstantPoolSDNode *CP = dyn_cast(Op)) { int Offset = CP->getOffset(); unsigned Align = CP->getAlignment(); // MachineConstantPool wants an explicit alignment. if (Align == 0) { if (CP->get()->getType() == Type::DoubleTy) Align = 3; // always 8-byte align doubles. else Align = TM.getTargetData() .getTypeAlignmentShift(CP->get()->getType()); } unsigned Idx = ConstPool->getConstantPoolIndex(CP->get(), Align); MI->addConstantPoolIndexOperand(Idx, Offset); } else if (ExternalSymbolSDNode *ES = dyn_cast(Op)) { MI->addExternalSymbolOperand(ES->getSymbol(), false); } else { assert(Op.getValueType() != MVT::Other && Op.getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); unsigned VReg = getVR(Op); MI->addRegOperand(VReg, MachineOperand::Use); // Verify that it is right. assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); if (II) { assert(II->OpInfo[IIOpNum].RegClass && "Don't have operand info for this instruction!"); assert(RegMap->getRegClass(VReg) == II->OpInfo[IIOpNum].RegClass && "Register class of operand and regclass of use don't agree!"); } } } /// EmitNode - Generate machine code for an node and needed dependencies. /// void ScheduleDAG::EmitNode(NodeInfo *NI) { unsigned VRBase = 0; // First virtual register for node SDNode *Node = NI->Node; // If machine instruction if (Node->isTargetOpcode()) { unsigned Opc = Node->getTargetOpcode(); const TargetInstrDescriptor &II = TII->get(Opc); unsigned NumResults = CountResults(Node); unsigned NodeOperands = CountOperands(Node); unsigned NumMIOperands = NodeOperands + NumResults; #ifndef NDEBUG assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&& "#operands for dag node doesn't match .td file!"); #endif // Create the new machine instruction. MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true); // Add result register values for things that are defined by this // instruction. // If the node is only used by a CopyToReg and the dest reg is a vreg, use // the CopyToReg'd destination register instead of creating a new vreg. if (NumResults == 1) { for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *Use = *UI; if (Use->getOpcode() == ISD::CopyToReg && Use->getOperand(2).Val == Node) { unsigned Reg = cast(Use->getOperand(1))->getReg(); if (MRegisterInfo::isVirtualRegister(Reg)) { VRBase = Reg; MI->addRegOperand(Reg, MachineOperand::Def); break; } } } } // Otherwise, create new virtual registers. if (NumResults && VRBase == 0) VRBase = CreateVirtualRegisters(MI, NumResults, RegMap, II); // Emit all of the actual operands of this instruction, adding them to the // instruction as appropriate. for (unsigned i = 0; i != NodeOperands; ++i) AddOperand(MI, Node->getOperand(i), i+NumResults, &II); // Now that we have emitted all operands, emit this instruction itself. if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) { BB->insert(BB->end(), MI); } else { // Insert this instruction into the end of the basic block, potentially // taking some custom action. BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB); } } else { switch (Node->getOpcode()) { default: Node->dump(); assert(0 && "This target-independent node should have been selected!"); case ISD::EntryToken: // fall thru case ISD::TokenFactor: break; case ISD::CopyToReg: { unsigned InReg = getVR(Node->getOperand(2)); unsigned DestReg = cast(Node->getOperand(1))->getReg(); if (InReg != DestReg) // Coallesced away the copy? MRI->copyRegToReg(*BB, BB->end(), DestReg, InReg, RegMap->getRegClass(InReg)); break; } case ISD::CopyFromReg: { unsigned SrcReg = cast(Node->getOperand(1))->getReg(); if (MRegisterInfo::isVirtualRegister(SrcReg)) { VRBase = SrcReg; // Just use the input register directly! break; } // If the node is only used by a CopyToReg and the dest reg is a vreg, use // the CopyToReg'd destination register instead of creating a new vreg. for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *Use = *UI; if (Use->getOpcode() == ISD::CopyToReg && Use->getOperand(2).Val == Node) { unsigned DestReg = cast(Use->getOperand(1))->getReg(); if (MRegisterInfo::isVirtualRegister(DestReg)) { VRBase = DestReg; break; } } } // Figure out the register class to create for the destreg. const TargetRegisterClass *TRC = 0; if (VRBase) { TRC = RegMap->getRegClass(VRBase); } else { // Pick the register class of the right type that contains this physreg. for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(), E = MRI->regclass_end(); I != E; ++I) if ((*I)->hasType(Node->getValueType(0)) && (*I)->contains(SrcReg)) { TRC = *I; break; } assert(TRC && "Couldn't find register class for reg copy!"); // Create the reg, emit the copy. VRBase = RegMap->createVirtualRegister(TRC); } MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC); break; } case ISD::INLINEASM: { unsigned NumOps = Node->getNumOperands(); if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag) --NumOps; // Ignore the flag operand. // Create the inline asm machine instruction. MachineInstr *MI = new MachineInstr(BB, TargetInstrInfo::INLINEASM, (NumOps-2)/2+1); // Add the asm string as an external symbol operand. const char *AsmStr = cast(Node->getOperand(1))->getSymbol(); MI->addExternalSymbolOperand(AsmStr, false); // Add all of the operand registers to the instruction. for (unsigned i = 2; i != NumOps;) { unsigned Flags = cast(Node->getOperand(i))->getValue(); unsigned NumVals = Flags >> 3; MI->addZeroExtImm64Operand(Flags); ++i; // Skip the ID value. switch (Flags & 7) { default: assert(0 && "Bad flags!"); case 1: // Use of register. for (; NumVals; --NumVals, ++i) { unsigned Reg = cast(Node->getOperand(i))->getReg(); MI->addMachineRegOperand(Reg, MachineOperand::Use); } break; case 2: // Def of register. for (; NumVals; --NumVals, ++i) { unsigned Reg = cast(Node->getOperand(i))->getReg(); MI->addMachineRegOperand(Reg, MachineOperand::Def); } break; case 3: { // Immediate. assert(NumVals == 1 && "Unknown immediate value!"); uint64_t Val = cast(Node->getOperand(i))->getValue(); MI->addZeroExtImm64Operand(Val); ++i; break; } case 4: // Addressing mode. // The addressing mode has been selected, just add all of the // operands to the machine instruction. for (; NumVals; --NumVals, ++i) AddOperand(MI, Node->getOperand(i), 0, 0); break; } } break; } } } assert(NI->VRBase == 0 && "Node emitted out of order - early"); NI->VRBase = VRBase; } void ScheduleDAG::EmitNoop() { TII->insertNoop(*BB, BB->end()); } /// EmitAll - Emit all nodes in schedule sorted order. /// void ScheduleDAG::EmitAll() { // For each node in the ordering for (unsigned i = 0, N = Ordering.size(); i < N; i++) { // Get the scheduling info NodeInfo *NI = Ordering[i]; if (NI->isInGroup()) { NodeGroupIterator NGI(Ordering[i]); while (NodeInfo *NI = NGI.next()) EmitNode(NI); } else { EmitNode(NI); } } } /// isFlagDefiner - Returns true if the node defines a flag result. static bool isFlagDefiner(SDNode *A) { unsigned N = A->getNumValues(); return N && A->getValueType(N - 1) == MVT::Flag; } /// isFlagUser - Returns true if the node uses a flag result. /// static bool isFlagUser(SDNode *A) { unsigned N = A->getNumOperands(); return N && A->getOperand(N - 1).getValueType() == MVT::Flag; } /// printNI - Print node info. /// void ScheduleDAG::printNI(std::ostream &O, NodeInfo *NI) const { #ifndef NDEBUG SDNode *Node = NI->Node; O << " " << std::hex << Node << std::dec << ", Lat=" << NI->Latency << ", Slot=" << NI->Slot << ", ARITY=(" << Node->getNumOperands() << "," << Node->getNumValues() << ")" << " " << Node->getOperationName(&DAG); if (isFlagDefiner(Node)) O << "<#"; if (isFlagUser(Node)) O << ">#"; #endif } /// printChanges - Hilight changes in order caused by scheduling. /// void ScheduleDAG::printChanges(unsigned Index) const { #ifndef NDEBUG // Get the ordered node count unsigned N = Ordering.size(); // Determine if any changes unsigned i = 0; for (; i < N; i++) { NodeInfo *NI = Ordering[i]; if (NI->Preorder != i) break; } if (i < N) { std::cerr << Index << ". New Ordering\n"; for (i = 0; i < N; i++) { NodeInfo *NI = Ordering[i]; std::cerr << " " << NI->Preorder << ". "; printNI(std::cerr, NI); std::cerr << "\n"; if (NI->isGroupDominator()) { NodeGroup *Group = NI->Group; for (NIIterator NII = Group->group_begin(), E = Group->group_end(); NII != E; NII++) { std::cerr << " "; printNI(std::cerr, *NII); std::cerr << "\n"; } } } } else { std::cerr << Index << ". No Changes\n"; } #endif } /// print - Print ordering to specified output stream. /// void ScheduleDAG::print(std::ostream &O) const { #ifndef NDEBUG using namespace std; O << "Ordering\n"; for (unsigned i = 0, N = Ordering.size(); i < N; i++) { NodeInfo *NI = Ordering[i]; printNI(O, NI); O << "\n"; if (NI->isGroupDominator()) { NodeGroup *Group = NI->Group; for (NIIterator NII = Group->group_begin(), E = Group->group_end(); NII != E; NII++) { O << " "; printNI(O, *NII); O << "\n"; } } } #endif } void ScheduleDAG::dump(const char *tag) const { std::cerr << tag; dump(); } void ScheduleDAG::dump() const { print(std::cerr); } /// Run - perform scheduling. /// MachineBasicBlock *ScheduleDAG::Run() { TII = TM.getInstrInfo(); MRI = TM.getRegisterInfo(); RegMap = BB->getParent()->getSSARegMap(); ConstPool = BB->getParent()->getConstantPool(); // Number the nodes NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end()); // Set up minimum info for scheduling PrepareNodeInfo(); // Construct node groups for flagged nodes IdentifyGroups(); Schedule(); return BB; } /// CountInternalUses - Returns the number of edges between the two nodes. /// static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U) { unsigned N = 0; for (unsigned M = U->Node->getNumOperands(); 0 < M--;) { SDOperand Op = U->Node->getOperand(M); if (Op.Val == D->Node) N++; } return N; } //===----------------------------------------------------------------------===// /// Add - Adds a definer and user pair to a node group. /// void ScheduleDAG::AddToGroup(NodeInfo *D, NodeInfo *U) { // Get current groups NodeGroup *DGroup = D->Group; NodeGroup *UGroup = U->Group; // If both are members of groups if (DGroup && UGroup) { // There may have been another edge connecting if (DGroup == UGroup) return; // Add the pending users count DGroup->addPending(UGroup->getPending()); // For each member of the users group NodeGroupIterator UNGI(U); while (NodeInfo *UNI = UNGI.next() ) { // Change the group UNI->Group = DGroup; // For each member of the definers group NodeGroupIterator DNGI(D); while (NodeInfo *DNI = DNGI.next() ) { // Remove internal edges DGroup->addPending(-CountInternalUses(DNI, UNI)); } } // Merge the two lists DGroup->group_insert(DGroup->group_end(), UGroup->group_begin(), UGroup->group_end()); } else if (DGroup) { // Make user member of definers group U->Group = DGroup; // Add users uses to definers group pending DGroup->addPending(U->Node->use_size()); // For each member of the definers group NodeGroupIterator DNGI(D); while (NodeInfo *DNI = DNGI.next() ) { // Remove internal edges DGroup->addPending(-CountInternalUses(DNI, U)); } DGroup->group_push_back(U); } else if (UGroup) { // Make definer member of users group D->Group = UGroup; // Add definers uses to users group pending UGroup->addPending(D->Node->use_size()); // For each member of the users group NodeGroupIterator UNGI(U); while (NodeInfo *UNI = UNGI.next() ) { // Remove internal edges UGroup->addPending(-CountInternalUses(D, UNI)); } UGroup->group_insert(UGroup->group_begin(), D); } else { D->Group = U->Group = DGroup = new NodeGroup(); DGroup->addPending(D->Node->use_size() + U->Node->use_size() - CountInternalUses(D, U)); DGroup->group_push_back(D); DGroup->group_push_back(U); if (HeadNG == NULL) HeadNG = DGroup; if (TailNG != NULL) TailNG->Next = DGroup; TailNG = DGroup; } }