//===- PiNodeInsertion.cpp - Insert Pi nodes into a program ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // PiNodeInsertion - This pass inserts single entry Phi nodes into basic blocks // that are preceded by a conditional branch, where the branch gives // information about the operands of the condition. For example, this C code: // if (x == 0) { ... = x + 4; // becomes: // if (x == 0) { // x2 = phi(x); // Node that can hold data flow information about X // ... = x2 + 4; // // Since the direction of the condition branch gives information about X itself // (whether or not it is zero), some passes (like value numbering or ABCD) can // use the inserted Phi/Pi nodes as a place to attach information, in this case // saying that X has a value of 0 in this scope. The power of this analysis // information is that "in the scope" translates to "for all uses of x2". // // This special form of Phi node is referred to as a Pi node, following the // terminology defined in the "Array Bounds Checks on Demand" paper. // // As a really trivial example of what the Pi nodes are good for, this pass // replaces values compared for equality with direct constants with the constant // itself in the branch it's equal to the constant. In the case above, it would // change the body to be "... = 0 + 4;" Real value numbering can do much more. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Support/CFG.h" #include "Support/Statistic.h" using namespace llvm; namespace { Statistic<> NumInserted("pinodes", "Number of Pi nodes inserted"); struct PiNodeInserter : public FunctionPass { virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); } // insertPiNodeFor - Insert a Pi node for V in the successors of BB if our // conditions hold. If Rep is not null, fill in a value of 'Rep' instead of // creating a new Pi node itself because we know that the value is a simple // constant. // bool insertPiNodeFor(Value *V, BasicBlock *BB, Value *Rep = 0); }; RegisterOpt X("pinodes", "Pi Node Insertion"); } Pass *llvm::createPiNodeInsertionPass() { return new PiNodeInserter(); } bool PiNodeInserter::runOnFunction(Function &F) { bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { TerminatorInst *TI = I->getTerminator(); // FIXME: Insert PI nodes for switch statements too // Look for conditional branch instructions... that branch on a setcc test if (BranchInst *BI = dyn_cast(TI)) if (BI->isConditional()) // TODO: we could in theory support logical operations here too... if (SetCondInst *SCI = dyn_cast(BI->getCondition())) { // Calculate replacement values if this is an obvious constant == or // != comparison... Value *TrueRep = 0, *FalseRep = 0; // Make sure the the constant is the second operand if there is one... // This fits with our canonicalization patterns used elsewhere in the // compiler, without depending on instcombine running before us. // if (isa(SCI->getOperand(0)) && !isa(SCI->getOperand(1))) { SCI->swapOperands(); Changed = true; } if (isa(SCI->getOperand(1))) { if (SCI->getOpcode() == Instruction::SetEQ) TrueRep = SCI->getOperand(1); else if (SCI->getOpcode() == Instruction::SetNE) FalseRep = SCI->getOperand(1); } BasicBlock *TB = BI->getSuccessor(0); // True block BasicBlock *FB = BI->getSuccessor(1); // False block // Insert the Pi nodes for the first operand to the comparison... Changed |= insertPiNodeFor(SCI->getOperand(0), TB, TrueRep); Changed |= insertPiNodeFor(SCI->getOperand(0), FB, FalseRep); // Insert the Pi nodes for the second operand to the comparison... Changed |= insertPiNodeFor(SCI->getOperand(1), TB); Changed |= insertPiNodeFor(SCI->getOperand(1), FB); } } return Changed; } // alreadyHasPiNodeFor - Return true if there is already a Pi node in BB for V. static bool alreadyHasPiNodeFor(Value *V, BasicBlock *BB) { for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) if (PHINode *PN = dyn_cast(*I)) if (PN->getParent() == BB) return true; return false; } // insertPiNodeFor - Insert a Pi node for V in the successors of BB if our // conditions hold. If Rep is not null, fill in a value of 'Rep' instead of // creating a new Pi node itself because we know that the value is a simple // constant. // bool PiNodeInserter::insertPiNodeFor(Value *V, BasicBlock *Succ, Value *Rep) { // Do not insert Pi nodes for constants! if (isa(V)) return false; // Check to make sure that there is not already a PI node inserted... if (alreadyHasPiNodeFor(V, Succ) && Rep == 0) return false; // Insert Pi nodes only into successors that the conditional branch dominates. // In this simple case, we know that BB dominates a successor as long there // are no other incoming edges to the successor. // // Check to make sure that the successor only has a single predecessor... pred_iterator PI = pred_begin(Succ); BasicBlock *Pred = *PI; if (++PI != pred_end(Succ)) return false; // Multiple predecessor? Bail... // It seems to be safe to insert the Pi node. Do so now... // Create the Pi node... Value *Pi = Rep; if (Rep == 0) // Insert the Pi node in the successor basic block... Pi = new PHINode(V->getType(), V->getName() + ".pi", Succ->begin()); // Loop over all of the uses of V, replacing ones that the Pi node // dominates with references to the Pi node itself. // DominatorSet &DS = getAnalysis(); for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ) if (Instruction *U = dyn_cast(*I++)) if (U->getParent()->getParent() == Succ->getParent() && DS.dominates(Succ, U->getParent())) { // This instruction is dominated by the Pi node, replace reference to V // with a reference to the Pi node. // U->replaceUsesOfWith(V, Pi); } // Set up the incoming value for the Pi node... do this after uses have been // replaced, because we don't want the Pi node to refer to itself. // if (Rep == 0) cast(Pi)->addIncoming(V, Pred); ++NumInserted; return true; }