//===-- RegAllocSimple.cpp - A simple generic register allocator --- ------===// // // This file implements a simple register allocator. *Very* simple. // //===----------------------------------------------------------------------===// #include "llvm/Function.h" #include "llvm/iTerminators.h" #include "llvm/Type.h" #include "llvm/Constants.h" #include "llvm/Pass.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Target/MachineInstrInfo.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/InstVisitor.h" #include "Support/Statistic.h" namespace { struct RegAllocSimple : public FunctionPass { TargetMachine &TM; MachineBasicBlock *CurrMBB; MachineFunction *MF; unsigned maxOffset; const MRegisterInfo *RegInfo; unsigned NumBytesAllocated, ByteAlignment; // Maps SSA Regs => offsets on the stack where these values are stored std::map VirtReg2OffsetMap; // Maps SSA Regs => physical regs std::map SSA2PhysRegMap; // Maps physical register to their register classes std::map PhysReg2RegClassMap; // Made to combat the incorrect allocation of r2 = add r1, r1 std::map VirtReg2PhysRegMap; // Maps RegClass => which index we can take a register from. Since this is a // simple register allocator, when we need a register of a certain class, we // just take the next available one. std::map RegsUsed; std::map RegClassIdx; RegAllocSimple(TargetMachine &tm) : TM(tm), CurrMBB(0), maxOffset(0), RegInfo(tm.getRegisterInfo()), ByteAlignment(4) { // build reverse mapping for physReg -> register class RegInfo->buildReg2RegClassMap(PhysReg2RegClassMap); RegsUsed[RegInfo->getFramePointer()] = 1; RegsUsed[RegInfo->getStackPointer()] = 1; cleanupAfterFunction(); } bool isAvailableReg(unsigned Reg) { // assert(Reg < MRegisterInfo::FirstVirtualReg && "..."); return RegsUsed.find(Reg) == RegsUsed.end(); } /// unsigned allocateStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *regClass); /// Given size (in bytes), returns a register that is currently unused /// Side effect: marks that register as being used until manually cleared unsigned getFreeReg(unsigned virtualReg); /// Returns all `borrowed' registers back to the free pool void clearAllRegs() { RegClassIdx.clear(); } /// Invalidates any references, real or implicit, to physical registers /// void invalidatePhysRegs(const MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); const MachineInstrInfo &MII = TM.getInstrInfo(); const MachineInstrDescriptor &Desc = MII.get(Opcode); const unsigned *regs = Desc.ImplicitUses; while (*regs) RegsUsed[*regs++] = 1; regs = Desc.ImplicitDefs; while (*regs) RegsUsed[*regs++] = 1; } void cleanupAfterFunction() { VirtReg2OffsetMap.clear(); SSA2PhysRegMap.clear(); NumBytesAllocated = ByteAlignment; } /// Moves value from memory into that register MachineBasicBlock::iterator moveUseToReg (MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned &PhysReg); /// Saves reg value on the stack (maps virtual register to stack value) MachineBasicBlock::iterator saveVirtRegToStack (MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned PhysReg); MachineBasicBlock::iterator savePhysRegToStack (MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned PhysReg); /// runOnFunction - Top level implementation of instruction selection for /// the entire function. /// bool runOnMachineFunction(MachineFunction &Fn); bool runOnFunction(Function &Fn) { return runOnMachineFunction(MachineFunction::get(&Fn)); } }; } unsigned RegAllocSimple::allocateStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *regClass) { if (VirtReg2OffsetMap.find(VirtReg) == VirtReg2OffsetMap.end()) { #if 0 unsigned size = regClass->getDataSize(); unsigned over = NumBytesAllocated - (NumBytesAllocated % ByteAlignment); if (size >= ByteAlignment - over) { // need to pad by (ByteAlignment - over) NumBytesAllocated += ByteAlignment - over; } VirtReg2OffsetMap[VirtReg] = NumBytesAllocated; NumBytesAllocated += size; #endif // FIXME: forcing each arg to take 4 bytes on the stack VirtReg2OffsetMap[VirtReg] = NumBytesAllocated; NumBytesAllocated += ByteAlignment; } return VirtReg2OffsetMap[VirtReg]; } unsigned RegAllocSimple::getFreeReg(unsigned virtualReg) { const TargetRegisterClass* regClass = MF->getRegClass(virtualReg); unsigned physReg; assert(regClass); if (RegClassIdx.find(regClass) != RegClassIdx.end()) { unsigned regIdx = RegClassIdx[regClass]++; assert(regIdx < regClass->getNumRegs() && "Not enough registers!"); physReg = regClass->getRegister(regIdx); } else { physReg = regClass->getRegister(0); // assert(physReg < regClass->getNumRegs() && "No registers in class!"); RegClassIdx[regClass] = 1; } if (isAvailableReg(physReg)) return physReg; else { return getFreeReg(virtualReg); } } MachineBasicBlock::iterator RegAllocSimple::moveUseToReg (MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned &PhysReg) { const TargetRegisterClass* regClass = MF->getRegClass(VirtReg); assert(regClass); unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass); PhysReg = getFreeReg(VirtReg); // Add move instruction(s) return RegInfo->loadRegOffset2Reg(MBB, I, PhysReg, RegInfo->getFramePointer(), -stackOffset, regClass->getDataSize()); } MachineBasicBlock::iterator RegAllocSimple::saveVirtRegToStack (MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned PhysReg) { const TargetRegisterClass* regClass = MF->getRegClass(VirtReg); assert(regClass); unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass); // Add move instruction(s) return RegInfo->storeReg2RegOffset(MBB, I, PhysReg, RegInfo->getFramePointer(), -stackOffset, regClass->getDataSize()); } MachineBasicBlock::iterator RegAllocSimple::savePhysRegToStack (MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned PhysReg) { const TargetRegisterClass* regClass = MF->getRegClass(PhysReg); assert(regClass); unsigned offset = allocateStackSpaceFor(PhysReg, regClass); // Add move instruction(s) return RegInfo->storeReg2RegOffset(MBB, I, PhysReg, RegInfo->getFramePointer(), offset, regClass->getDataSize()); } bool RegAllocSimple::runOnMachineFunction(MachineFunction &Fn) { cleanupAfterFunction(); unsigned virtualReg, physReg; DEBUG(std::cerr << "Machine Function " << "\n"); MF = &Fn; for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { CurrMBB = &(*MBB); // Handle PHI instructions specially: add moves to each pred block while (MBB->front()->getOpcode() == 0) { MachineInstr *MI = MBB->front(); // get rid of the phi MBB->erase(MBB->begin()); // a preliminary pass that will invalidate any registers that // are used by the instruction (including implicit uses) invalidatePhysRegs(MI); DEBUG(std::cerr << "num invalid regs: " << RegsUsed.size() << "\n"); DEBUG(std::cerr << "num ops: " << MI->getNumOperands() << "\n"); MachineOperand &targetReg = MI->getOperand(0); // If it's a virtual register, allocate a physical one // otherwise, just use whatever register is there now // note: it MUST be a register -- we're assigning to it virtualReg = (unsigned) targetReg.getAllocatedRegNum(); if (targetReg.isVirtualRegister()) { physReg = getFreeReg(virtualReg); } else { physReg = virtualReg; } // Find the register class of the target register: should be the // same as the values we're trying to store there const TargetRegisterClass* regClass = PhysReg2RegClassMap[physReg]; assert(regClass && "Target register class not found!"); unsigned dataSize = regClass->getDataSize(); for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) { MachineOperand &opVal = MI->getOperand(i-1); // Get the MachineBasicBlock equivalent of the BasicBlock that is the // source path the phi MachineBasicBlock *opBlock = MI->getOperand(i).getMachineBasicBlock(); MachineBasicBlock::iterator opI = opBlock->end(); MachineInstr *opMI = *(--opI); const MachineInstrInfo &MII = TM.getInstrInfo(); // must backtrack over ALL the branches in the previous block, until no more while ((MII.isBranch(opMI->getOpcode()) || MII.isReturn(opMI->getOpcode())) && opI != opBlock->begin()) { opMI = *(--opI); } // move back to the first branch instruction so new instructions // are inserted right in front of it and not in front of a non-branch ++opI; // Retrieve the constant value from this op, move it to target // register of the phi if (opVal.getType() == MachineOperand::MO_SignExtendedImmed || opVal.getType() == MachineOperand::MO_UnextendedImmed) { opI = RegInfo->moveImm2Reg(opBlock, opI, physReg, (unsigned) opVal.getImmedValue(), dataSize); saveVirtRegToStack(opBlock, opI, virtualReg, physReg); } else { // Allocate a physical register and add a move in the BB unsigned opVirtualReg = (unsigned) opVal.getAllocatedRegNum(); unsigned opPhysReg; // = getFreeReg(opVirtualReg); opI = moveUseToReg(opBlock, opI, opVirtualReg, physReg); //opI = RegInfo->moveReg2Reg(opBlock, opI, physReg, opPhysReg, // dataSize); // Save that register value to the stack of the TARGET REG saveVirtRegToStack(opBlock, opI, virtualReg, physReg); } // make regs available to other instructions clearAllRegs(); } // really delete the instruction delete MI; } //loop over each basic block for (MachineBasicBlock::iterator I = MBB->begin(); I != MBB->end(); ++I) { MachineInstr *MI = *I; // a preliminary pass that will invalidate any registers that // are used by the instruction (including implicit uses) invalidatePhysRegs(MI); // Loop over uses, move from memory into registers for (int i = MI->getNumOperands() - 1; i >= 0; --i) { MachineOperand &op = MI->getOperand(i); if (op.getType() == MachineOperand::MO_SignExtendedImmed || op.getType() == MachineOperand::MO_UnextendedImmed) { DEBUG(std::cerr << "const\n"); } else if (op.isVirtualRegister()) { virtualReg = (unsigned) op.getAllocatedRegNum(); DEBUG(std::cerr << "op: " << op << "\n"); DEBUG(std::cerr << "\t inst[" << i << "]: "; MI->print(std::cerr, TM)); // make sure the same virtual register maps to the same physical // register in any given instruction if (VirtReg2PhysRegMap.find(virtualReg) != VirtReg2PhysRegMap.end()) { physReg = VirtReg2PhysRegMap[virtualReg]; } else { if (op.opIsDef()) { if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) { // must be same register number as the first operand // This maps a = b + c into b += c, and saves b into a's spot physReg = (unsigned) MI->getOperand(1).getAllocatedRegNum(); } else { physReg = getFreeReg(virtualReg); } MachineBasicBlock::iterator J = I; J = saveVirtRegToStack(CurrMBB, ++J, virtualReg, physReg); I = --J; } else { I = moveUseToReg(CurrMBB, I, virtualReg, physReg); } VirtReg2PhysRegMap[virtualReg] = physReg; } MI->SetMachineOperandReg(i, physReg); DEBUG(std::cerr << "virt: " << virtualReg << ", phys: " << op.getAllocatedRegNum() << "\n"); } } clearAllRegs(); VirtReg2PhysRegMap.clear(); } } // add prologue we should preserve callee-save registers... MachineFunction::iterator Fi = Fn.begin(); MachineBasicBlock *MBB = Fi; MachineBasicBlock::iterator MBBi = MBB->begin(); RegInfo->emitPrologue(MBB, MBBi, NumBytesAllocated); // add epilogue to restore the callee-save registers // loop over the basic block for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { // check if last instruction is a RET MachineBasicBlock::iterator I = (*MBB).end(); MachineInstr *MI = *(--I); const MachineInstrInfo &MII = TM.getInstrInfo(); if (MII.isReturn(MI->getOpcode())) { // this block has a return instruction, add epilogue RegInfo->emitEpilogue(MBB, I, NumBytesAllocated); } } return false; // We never modify the LLVM itself. } Pass *createSimpleX86RegisterAllocator(TargetMachine &TM) { return new RegAllocSimple(TM); }