//===-- SIInstrInfo.cpp - SI Instruction Information ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief SI Implementation of TargetInstrInfo. // //===----------------------------------------------------------------------===// #include "SIInstrInfo.h" #include "AMDGPUTargetMachine.h" #include "SIDefines.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/MC/MCInstrDesc.h" using namespace llvm; SIInstrInfo::SIInstrInfo(AMDGPUTargetMachine &tm) : AMDGPUInstrInfo(tm), RI(tm) { } //===----------------------------------------------------------------------===// // TargetInstrInfo callbacks //===----------------------------------------------------------------------===// void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // If we are trying to copy to or from SCC, there is a bug somewhere else in // the backend. While it may be theoretically possible to do this, it should // never be necessary. assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC); static const int16_t Sub0_15[] = { AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11, AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 0 }; static const int16_t Sub0_7[] = { AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 0 }; static const int16_t Sub0_3[] = { AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 0 }; static const int16_t Sub0_2[] = { AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, 0 }; static const int16_t Sub0_1[] = { AMDGPU::sub0, AMDGPU::sub1, 0 }; unsigned Opcode; const int16_t *SubIndices; if (AMDGPU::M0 == DestReg) { // Check if M0 isn't already set to this value for (MachineBasicBlock::reverse_iterator E = MBB.rend(), I = MachineBasicBlock::reverse_iterator(MI); I != E; ++I) { if (!I->definesRegister(AMDGPU::M0)) continue; unsigned Opc = I->getOpcode(); if (Opc != TargetOpcode::COPY && Opc != AMDGPU::S_MOV_B32) break; if (!I->readsRegister(SrcReg)) break; // The copy isn't necessary return; } } if (AMDGPU::SReg_32RegClass.contains(DestReg)) { assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } else if (AMDGPU::SReg_64RegClass.contains(DestReg)) { assert(AMDGPU::SReg_64RegClass.contains(SrcReg)); BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } else if (AMDGPU::SReg_128RegClass.contains(DestReg)) { assert(AMDGPU::SReg_128RegClass.contains(SrcReg)); Opcode = AMDGPU::S_MOV_B32; SubIndices = Sub0_3; } else if (AMDGPU::SReg_256RegClass.contains(DestReg)) { assert(AMDGPU::SReg_256RegClass.contains(SrcReg)); Opcode = AMDGPU::S_MOV_B32; SubIndices = Sub0_7; } else if (AMDGPU::SReg_512RegClass.contains(DestReg)) { assert(AMDGPU::SReg_512RegClass.contains(SrcReg)); Opcode = AMDGPU::S_MOV_B32; SubIndices = Sub0_15; } else if (AMDGPU::VReg_32RegClass.contains(DestReg)) { assert(AMDGPU::VReg_32RegClass.contains(SrcReg) || AMDGPU::SReg_32RegClass.contains(SrcReg)); BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } else if (AMDGPU::VReg_64RegClass.contains(DestReg)) { assert(AMDGPU::VReg_64RegClass.contains(SrcReg) || AMDGPU::SReg_64RegClass.contains(SrcReg)); Opcode = AMDGPU::V_MOV_B32_e32; SubIndices = Sub0_1; } else if (AMDGPU::VReg_96RegClass.contains(DestReg)) { assert(AMDGPU::VReg_96RegClass.contains(SrcReg)); Opcode = AMDGPU::V_MOV_B32_e32; SubIndices = Sub0_2; } else if (AMDGPU::VReg_128RegClass.contains(DestReg)) { assert(AMDGPU::VReg_128RegClass.contains(SrcReg) || AMDGPU::SReg_128RegClass.contains(SrcReg)); Opcode = AMDGPU::V_MOV_B32_e32; SubIndices = Sub0_3; } else if (AMDGPU::VReg_256RegClass.contains(DestReg)) { assert(AMDGPU::VReg_256RegClass.contains(SrcReg) || AMDGPU::SReg_256RegClass.contains(SrcReg)); Opcode = AMDGPU::V_MOV_B32_e32; SubIndices = Sub0_7; } else if (AMDGPU::VReg_512RegClass.contains(DestReg)) { assert(AMDGPU::VReg_512RegClass.contains(SrcReg) || AMDGPU::SReg_512RegClass.contains(SrcReg)); Opcode = AMDGPU::V_MOV_B32_e32; SubIndices = Sub0_15; } else { llvm_unreachable("Can't copy register!"); } while (unsigned SubIdx = *SubIndices++) { MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, get(Opcode), RI.getSubReg(DestReg, SubIdx)); Builder.addReg(RI.getSubReg(SrcReg, SubIdx), getKillRegState(KillSrc)); if (*SubIndices) Builder.addReg(DestReg, RegState::Define | RegState::Implicit); } } unsigned SIInstrInfo::commuteOpcode(unsigned Opcode) const { int NewOpc; // Try to map original to commuted opcode if ((NewOpc = AMDGPU::getCommuteRev(Opcode)) != -1) return NewOpc; // Try to map commuted to original opcode if ((NewOpc = AMDGPU::getCommuteOrig(Opcode)) != -1) return NewOpc; return Opcode; } void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); SIMachineFunctionInfo *MFI = MBB.getParent()->getInfo(); DebugLoc DL = MBB.findDebugLoc(MI); unsigned KillFlag = isKill ? RegState::Kill : 0; if (TRI->getCommonSubClass(RC, &AMDGPU::SGPR_32RegClass)) { unsigned Lane = MFI->SpillTracker.getNextLane(MRI); BuildMI(MBB, MI, DL, get(AMDGPU::V_WRITELANE_B32), MFI->SpillTracker.LaneVGPR) .addReg(SrcReg, KillFlag) .addImm(Lane); MFI->SpillTracker.addSpilledReg(FrameIndex, MFI->SpillTracker.LaneVGPR, Lane); } else { for (unsigned i = 0, e = RC->getSize() / 4; i != e; ++i) { unsigned SubReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(MBB, MI, MBB.findDebugLoc(MI), get(AMDGPU::COPY), SubReg) .addReg(SrcReg, 0, RI.getSubRegFromChannel(i)); storeRegToStackSlot(MBB, MI, SubReg, isKill, FrameIndex + i, &AMDGPU::SReg_32RegClass, TRI); } } } void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); SIMachineFunctionInfo *MFI = MBB.getParent()->getInfo(); DebugLoc DL = MBB.findDebugLoc(MI); if (TRI->getCommonSubClass(RC, &AMDGPU::SReg_32RegClass)) { SIMachineFunctionInfo::SpilledReg Spill = MFI->SpillTracker.getSpilledReg(FrameIndex); assert(Spill.VGPR); BuildMI(MBB, MI, DL, get(AMDGPU::V_READLANE_B32), DestReg) .addReg(Spill.VGPR) .addImm(Spill.Lane); } else { for (unsigned i = 0, e = RC->getSize() / 4; i != e; ++i) { unsigned Flags = RegState::Define; if (i == 0) { Flags |= RegState::Undef; } unsigned SubReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); loadRegFromStackSlot(MBB, MI, SubReg, FrameIndex + i, &AMDGPU::SReg_32RegClass, TRI); BuildMI(MBB, MI, DL, get(AMDGPU::COPY)) .addReg(DestReg, Flags, RI.getSubRegFromChannel(i)) .addReg(SubReg); } } } MachineInstr *SIInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); if (MI->getNumOperands() < 3 || !MI->getOperand(1).isReg()) return 0; // Cannot commute VOP2 if src0 is SGPR. if (isVOP2(MI->getOpcode()) && MI->getOperand(1).isReg() && RI.isSGPRClass(MRI.getRegClass(MI->getOperand(1).getReg()))) return 0; if (!MI->getOperand(2).isReg()) { // XXX: Commute instructions with FPImm operands if (NewMI || MI->getOperand(2).isFPImm() || (!isVOP2(MI->getOpcode()) && !isVOP3(MI->getOpcode()))) { return 0; } // XXX: Commute VOP3 instructions with abs and neg set. if (isVOP3(MI->getOpcode()) && (MI->getOperand(AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::abs)).getImm() || MI->getOperand(AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::neg)).getImm())) return 0; unsigned Reg = MI->getOperand(1).getReg(); unsigned SubReg = MI->getOperand(1).getSubReg(); MI->getOperand(1).ChangeToImmediate(MI->getOperand(2).getImm()); MI->getOperand(2).ChangeToRegister(Reg, false); MI->getOperand(2).setSubReg(SubReg); } else { MI = TargetInstrInfo::commuteInstruction(MI, NewMI); } if (MI) MI->setDesc(get(commuteOpcode(MI->getOpcode()))); return MI; } MachineInstr *SIInstrInfo::buildMovInstr(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned DstReg, unsigned SrcReg) const { return BuildMI(*MBB, I, MBB->findDebugLoc(I), get(AMDGPU::V_MOV_B32_e32), DstReg) .addReg(SrcReg); } bool SIInstrInfo::isMov(unsigned Opcode) const { switch(Opcode) { default: return false; case AMDGPU::S_MOV_B32: case AMDGPU::S_MOV_B64: case AMDGPU::V_MOV_B32_e32: case AMDGPU::V_MOV_B32_e64: return true; } } bool SIInstrInfo::isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { return RC != &AMDGPU::EXECRegRegClass; } namespace llvm { namespace AMDGPU { // Helper function generated by tablegen. We are wrapping this with // an SIInstrInfo function that reutrns bool rather than int. int isDS(uint16_t Opcode); } } bool SIInstrInfo::isDS(uint16_t Opcode) const { return ::AMDGPU::isDS(Opcode) != -1; } int SIInstrInfo::isMIMG(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::MIMG; } int SIInstrInfo::isSMRD(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::SMRD; } bool SIInstrInfo::isVOP1(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOP1; } bool SIInstrInfo::isVOP2(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOP2; } bool SIInstrInfo::isVOP3(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOP3; } bool SIInstrInfo::isVOPC(uint16_t Opcode) const { return get(Opcode).TSFlags & SIInstrFlags::VOPC; } bool SIInstrInfo::isSALUInstr(const MachineInstr &MI) const { return get(MI.getOpcode()).TSFlags & SIInstrFlags::SALU; } bool SIInstrInfo::isInlineConstant(const MachineOperand &MO) const { union { int32_t I; float F; } Imm; if (MO.isImm()) { Imm.I = MO.getImm(); } else if (MO.isFPImm()) { Imm.F = MO.getFPImm()->getValueAPF().convertToFloat(); } else { return false; } // The actual type of the operand does not seem to matter as long // as the bits match one of the inline immediate values. For example: // // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, // so it is a legal inline immediate. // // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in // floating-point, so it is a legal inline immediate. return (Imm.I >= -16 && Imm.I <= 64) || Imm.F == 0.0f || Imm.F == 0.5f || Imm.F == -0.5f || Imm.F == 1.0f || Imm.F == -1.0f || Imm.F == 2.0f || Imm.F == -2.0f || Imm.F == 4.0f || Imm.F == -4.0f; } bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO) const { return (MO.isImm() || MO.isFPImm()) && !isInlineConstant(MO); } bool SIInstrInfo::verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const { uint16_t Opcode = MI->getOpcode(); int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1); int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2); // Make sure the number of operands is correct. const MCInstrDesc &Desc = get(Opcode); if (!Desc.isVariadic() && Desc.getNumOperands() != MI->getNumExplicitOperands()) { ErrInfo = "Instruction has wrong number of operands."; return false; } // Make sure the register classes are correct for (unsigned i = 0, e = Desc.getNumOperands(); i != e; ++i) { switch (Desc.OpInfo[i].OperandType) { case MCOI::OPERAND_REGISTER: break; case MCOI::OPERAND_IMMEDIATE: if (!MI->getOperand(i).isImm() && !MI->getOperand(i).isFPImm()) { ErrInfo = "Expected immediate, but got non-immediate"; return false; } // Fall-through default: continue; } if (!MI->getOperand(i).isReg()) continue; int RegClass = Desc.OpInfo[i].RegClass; if (RegClass != -1) { unsigned Reg = MI->getOperand(i).getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) continue; const TargetRegisterClass *RC = RI.getRegClass(RegClass); if (!RC->contains(Reg)) { ErrInfo = "Operand has incorrect register class."; return false; } } } // Verify VOP* if (isVOP1(Opcode) || isVOP2(Opcode) || isVOP3(Opcode) || isVOPC(Opcode)) { unsigned ConstantBusCount = 0; unsigned SGPRUsed = AMDGPU::NoRegister; for (int i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isUse() && !TargetRegisterInfo::isVirtualRegister(MO.getReg())) { // EXEC register uses the constant bus. if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC) ++ConstantBusCount; // SGPRs use the constant bus if (MO.getReg() == AMDGPU::M0 || MO.getReg() == AMDGPU::VCC || (!MO.isImplicit() && (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) || AMDGPU::SGPR_64RegClass.contains(MO.getReg())))) { if (SGPRUsed != MO.getReg()) { ++ConstantBusCount; SGPRUsed = MO.getReg(); } } } // Literal constants use the constant bus. if (isLiteralConstant(MO)) ++ConstantBusCount; } if (ConstantBusCount > 1) { ErrInfo = "VOP* instruction uses the constant bus more than once"; return false; } } // Verify SRC1 for VOP2 and VOPC if (Src1Idx != -1 && (isVOP2(Opcode) || isVOPC(Opcode))) { const MachineOperand &Src1 = MI->getOperand(Src1Idx); if (Src1.isImm() || Src1.isFPImm()) { ErrInfo = "VOP[2C] src1 cannot be an immediate."; return false; } } // Verify VOP3 if (isVOP3(Opcode)) { if (Src0Idx != -1 && isLiteralConstant(MI->getOperand(Src0Idx))) { ErrInfo = "VOP3 src0 cannot be a literal constant."; return false; } if (Src1Idx != -1 && isLiteralConstant(MI->getOperand(Src1Idx))) { ErrInfo = "VOP3 src1 cannot be a literal constant."; return false; } if (Src2Idx != -1 && isLiteralConstant(MI->getOperand(Src2Idx))) { ErrInfo = "VOP3 src2 cannot be a literal constant."; return false; } } return true; } unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) { switch (MI.getOpcode()) { default: return AMDGPU::INSTRUCTION_LIST_END; case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE; case AMDGPU::COPY: return AMDGPU::COPY; case AMDGPU::PHI: return AMDGPU::PHI; case AMDGPU::S_ADD_I32: return AMDGPU::V_ADD_I32_e32; case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32; case AMDGPU::S_SUB_I32: return AMDGPU::V_SUB_I32_e32; case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32; case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32; case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64; case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32; case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64; case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32; case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64; } } bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const { return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END; } const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI, unsigned OpNo) const { const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); const MCInstrDesc &Desc = get(MI.getOpcode()); if (MI.isVariadic() || OpNo >= Desc.getNumOperands() || Desc.OpInfo[OpNo].RegClass == -1) return MRI.getRegClass(MI.getOperand(OpNo).getReg()); unsigned RCID = Desc.OpInfo[OpNo].RegClass; return RI.getRegClass(RCID); } bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const { switch (MI.getOpcode()) { case AMDGPU::COPY: case AMDGPU::REG_SEQUENCE: return RI.hasVGPRs(getOpRegClass(MI, 0)); default: return RI.hasVGPRs(getOpRegClass(MI, OpNo)); } } void SIInstrInfo::legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const { MachineBasicBlock::iterator I = MI; MachineOperand &MO = MI->getOperand(OpIdx); MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); unsigned RCID = get(MI->getOpcode()).OpInfo[OpIdx].RegClass; const TargetRegisterClass *RC = RI.getRegClass(RCID); unsigned Opcode = AMDGPU::V_MOV_B32_e32; if (MO.isReg()) { Opcode = AMDGPU::COPY; } else if (RI.isSGPRClass(RC)) { Opcode = AMDGPU::S_MOV_B32; } const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC); unsigned Reg = MRI.createVirtualRegister(VRC); BuildMI(*MI->getParent(), I, MI->getParent()->findDebugLoc(I), get(Opcode), Reg).addOperand(MO); MO.ChangeToRegister(Reg, false); } void SIInstrInfo::legalizeOperands(MachineInstr *MI) const { MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::src0); int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::src1); int Src2Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::src2); // Legalize VOP2 if (isVOP2(MI->getOpcode()) && Src1Idx != -1) { MachineOperand &Src0 = MI->getOperand(Src0Idx); MachineOperand &Src1 = MI->getOperand(Src1Idx); // If the instruction implicitly reads VCC, we can't have any SGPR operands, // so move any. bool ReadsVCC = MI->readsRegister(AMDGPU::VCC, &RI); if (ReadsVCC && Src0.isReg() && RI.isSGPRClass(MRI.getRegClass(Src0.getReg()))) { legalizeOpWithMove(MI, Src0Idx); return; } if (ReadsVCC && Src1.isReg() && RI.isSGPRClass(MRI.getRegClass(Src1.getReg()))) { legalizeOpWithMove(MI, Src1Idx); return; } // Legalize VOP2 instructions where src1 is not a VGPR. An SGPR input must // be the first operand, and there can only be one. if (Src1.isImm() || Src1.isFPImm() || (Src1.isReg() && RI.isSGPRClass(MRI.getRegClass(Src1.getReg())))) { if (MI->isCommutable()) { if (commuteInstruction(MI)) return; } legalizeOpWithMove(MI, Src1Idx); } } // XXX - Do any VOP3 instructions read VCC? // Legalize VOP3 if (isVOP3(MI->getOpcode())) { int VOP3Idx[3] = {Src0Idx, Src1Idx, Src2Idx}; unsigned SGPRReg = AMDGPU::NoRegister; for (unsigned i = 0; i < 3; ++i) { int Idx = VOP3Idx[i]; if (Idx == -1) continue; MachineOperand &MO = MI->getOperand(Idx); if (MO.isReg()) { if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg()))) continue; // VGPRs are legal assert(MO.getReg() != AMDGPU::SCC && "SCC operand to VOP3 instruction"); if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) { SGPRReg = MO.getReg(); // We can use one SGPR in each VOP3 instruction. continue; } } else if (!isLiteralConstant(MO)) { // If it is not a register and not a literal constant, then it must be // an inline constant which is always legal. continue; } // If we make it this far, then the operand is not legal and we must // legalize it. legalizeOpWithMove(MI, Idx); } } // Legalize REG_SEQUENCE // The register class of the operands much be the same type as the register // class of the output. if (MI->getOpcode() == AMDGPU::REG_SEQUENCE) { const TargetRegisterClass *RC = NULL, *SRC = NULL, *VRC = NULL; for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) { if (!MI->getOperand(i).isReg() || !TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg())) continue; const TargetRegisterClass *OpRC = MRI.getRegClass(MI->getOperand(i).getReg()); if (RI.hasVGPRs(OpRC)) { VRC = OpRC; } else { SRC = OpRC; } } // If any of the operands are VGPR registers, then they all most be // otherwise we will create illegal VGPR->SGPR copies when legalizing // them. if (VRC || !RI.isSGPRClass(getOpRegClass(*MI, 0))) { if (!VRC) { assert(SRC); VRC = RI.getEquivalentVGPRClass(SRC); } RC = VRC; } else { RC = SRC; } // Update all the operands so they have the same type. for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) { if (!MI->getOperand(i).isReg() || !TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg())) continue; unsigned DstReg = MRI.createVirtualRegister(RC); BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(AMDGPU::COPY), DstReg) .addOperand(MI->getOperand(i)); MI->getOperand(i).setReg(DstReg); } } } void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const { SmallVector Worklist; Worklist.push_back(&TopInst); while (!Worklist.empty()) { MachineInstr *Inst = Worklist.pop_back_val(); unsigned NewOpcode = getVALUOp(*Inst); if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) continue; MachineRegisterInfo &MRI = Inst->getParent()->getParent()->getRegInfo(); // Use the new VALU Opcode. const MCInstrDesc &NewDesc = get(NewOpcode); Inst->setDesc(NewDesc); // Remove any references to SCC. Vector instructions can't read from it, and // We're just about to add the implicit use / defs of VCC, and we don't want // both. for (unsigned i = Inst->getNumOperands() - 1; i > 0; --i) { MachineOperand &Op = Inst->getOperand(i); if (Op.isReg() && Op.getReg() == AMDGPU::SCC) Inst->RemoveOperand(i); } // Add the implict and explicit register definitions. if (NewDesc.ImplicitUses) { for (unsigned i = 0; NewDesc.ImplicitUses[i]; ++i) { unsigned Reg = NewDesc.ImplicitUses[i]; Inst->addOperand(MachineOperand::CreateReg(Reg, false, true)); } } if (NewDesc.ImplicitDefs) { for (unsigned i = 0; NewDesc.ImplicitDefs[i]; ++i) { unsigned Reg = NewDesc.ImplicitDefs[i]; Inst->addOperand(MachineOperand::CreateReg(Reg, true, true)); } } legalizeOperands(Inst); // Update the destination register class. const TargetRegisterClass *NewDstRC = getOpRegClass(*Inst, 0); switch (Inst->getOpcode()) { // For target instructions, getOpRegClass just returns the virtual // register class associated with the operand, so we need to find an // equivalent VGPR register class in order to move the instruction to the // VALU. case AMDGPU::COPY: case AMDGPU::PHI: case AMDGPU::REG_SEQUENCE: if (RI.hasVGPRs(NewDstRC)) continue; NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); if (!NewDstRC) continue; break; default: break; } unsigned DstReg = Inst->getOperand(0).getReg(); unsigned NewDstReg = MRI.createVirtualRegister(NewDstRC); MRI.replaceRegWith(DstReg, NewDstReg); for (MachineRegisterInfo::use_iterator I = MRI.use_begin(NewDstReg), E = MRI.use_end(); I != E; ++I) { MachineInstr &UseMI = *I->getParent(); if (!canReadVGPR(UseMI, I.getOperandNo())) { Worklist.push_back(&UseMI); } } } } //===----------------------------------------------------------------------===// // Indirect addressing callbacks //===----------------------------------------------------------------------===// unsigned SIInstrInfo::calculateIndirectAddress(unsigned RegIndex, unsigned Channel) const { assert(Channel == 0); return RegIndex; } const TargetRegisterClass *SIInstrInfo::getIndirectAddrRegClass() const { return &AMDGPU::VReg_32RegClass; } MachineInstrBuilder SIInstrInfo::buildIndirectWrite( MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg) const { const DebugLoc &DL = MBB->findDebugLoc(I); unsigned IndirectBaseReg = AMDGPU::VReg_32RegClass.getRegister( getIndirectIndexBegin(*MBB->getParent())); return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_DST_V1)) .addReg(IndirectBaseReg, RegState::Define) .addOperand(I->getOperand(0)) .addReg(IndirectBaseReg) .addReg(OffsetReg) .addImm(0) .addReg(ValueReg); } MachineInstrBuilder SIInstrInfo::buildIndirectRead( MachineBasicBlock *MBB, MachineBasicBlock::iterator I, unsigned ValueReg, unsigned Address, unsigned OffsetReg) const { const DebugLoc &DL = MBB->findDebugLoc(I); unsigned IndirectBaseReg = AMDGPU::VReg_32RegClass.getRegister( getIndirectIndexBegin(*MBB->getParent())); return BuildMI(*MBB, I, DL, get(AMDGPU::SI_INDIRECT_SRC)) .addOperand(I->getOperand(0)) .addOperand(I->getOperand(1)) .addReg(IndirectBaseReg) .addReg(OffsetReg) .addImm(0); } void SIInstrInfo::reserveIndirectRegisters(BitVector &Reserved, const MachineFunction &MF) const { int End = getIndirectIndexEnd(MF); int Begin = getIndirectIndexBegin(MF); if (End == -1) return; for (int Index = Begin; Index <= End; ++Index) Reserved.set(AMDGPU::VReg_32RegClass.getRegister(Index)); for (int Index = std::max(0, Begin - 1); Index <= End; ++Index) Reserved.set(AMDGPU::VReg_64RegClass.getRegister(Index)); for (int Index = std::max(0, Begin - 2); Index <= End; ++Index) Reserved.set(AMDGPU::VReg_96RegClass.getRegister(Index)); for (int Index = std::max(0, Begin - 3); Index <= End; ++Index) Reserved.set(AMDGPU::VReg_128RegClass.getRegister(Index)); for (int Index = std::max(0, Begin - 7); Index <= End; ++Index) Reserved.set(AMDGPU::VReg_256RegClass.getRegister(Index)); for (int Index = std::max(0, Begin - 15); Index <= End; ++Index) Reserved.set(AMDGPU::VReg_512RegClass.getRegister(Index)); }