//===-LTOCodeGenerator.cpp - LLVM Link Time Optimizer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Link Time Optimization library. This library is // intended to be used by linker to optimize code at link time. // //===----------------------------------------------------------------------===// #include "LTOCodeGenerator.h" #include "LTOModule.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/Config/config.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Linker.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/Host.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Signals.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/system_error.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/ObjCARC.h" using namespace llvm; static cl::opt DisableOpt("disable-opt", cl::init(false), cl::desc("Do not run any optimization passes")); static cl::opt DisableInline("disable-inlining", cl::init(false), cl::desc("Do not run the inliner pass")); static cl::opt DisableGVNLoadPRE("disable-gvn-loadpre", cl::init(false), cl::desc("Do not run the GVN load PRE pass")); const char* LTOCodeGenerator::getVersionString() { #ifdef LLVM_VERSION_INFO return PACKAGE_NAME " version " PACKAGE_VERSION ", " LLVM_VERSION_INFO; #else return PACKAGE_NAME " version " PACKAGE_VERSION; #endif } LTOCodeGenerator::LTOCodeGenerator() : _context(getGlobalContext()), _linker("LinkTimeOptimizer", "ld-temp.o", _context), _target(NULL), _emitDwarfDebugInfo(false), _scopeRestrictionsDone(false), _codeModel(LTO_CODEGEN_PIC_MODEL_DYNAMIC), _nativeObjectFile(NULL) { InitializeAllTargets(); InitializeAllTargetMCs(); InitializeAllAsmPrinters(); } LTOCodeGenerator::~LTOCodeGenerator() { delete _target; delete _nativeObjectFile; for (std::vector::iterator I = _codegenOptions.begin(), E = _codegenOptions.end(); I != E; ++I) free(*I); } bool LTOCodeGenerator::addModule(LTOModule* mod, std::string& errMsg) { bool ret = _linker.LinkInModule(mod->getLLVVMModule(), &errMsg); const std::vector &undefs = mod->getAsmUndefinedRefs(); for (int i = 0, e = undefs.size(); i != e; ++i) _asmUndefinedRefs[undefs[i]] = 1; return ret; } bool LTOCodeGenerator::setDebugInfo(lto_debug_model debug, std::string& errMsg) { switch (debug) { case LTO_DEBUG_MODEL_NONE: _emitDwarfDebugInfo = false; return false; case LTO_DEBUG_MODEL_DWARF: _emitDwarfDebugInfo = true; return false; } llvm_unreachable("Unknown debug format!"); } bool LTOCodeGenerator::setCodePICModel(lto_codegen_model model, std::string& errMsg) { switch (model) { case LTO_CODEGEN_PIC_MODEL_STATIC: case LTO_CODEGEN_PIC_MODEL_DYNAMIC: case LTO_CODEGEN_PIC_MODEL_DYNAMIC_NO_PIC: _codeModel = model; return false; } llvm_unreachable("Unknown PIC model!"); } bool LTOCodeGenerator::writeMergedModules(const char *path, std::string &errMsg) { if (determineTarget(errMsg)) return true; // mark which symbols can not be internalized applyScopeRestrictions(); // create output file std::string ErrInfo; tool_output_file Out(path, ErrInfo, raw_fd_ostream::F_Binary); if (!ErrInfo.empty()) { errMsg = "could not open bitcode file for writing: "; errMsg += path; return true; } // write bitcode to it WriteBitcodeToFile(_linker.getModule(), Out.os()); Out.os().close(); if (Out.os().has_error()) { errMsg = "could not write bitcode file: "; errMsg += path; Out.os().clear_error(); return true; } Out.keep(); return false; } bool LTOCodeGenerator::compile_to_file(const char** name, std::string& errMsg) { // make unique temp .o file to put generated object file sys::PathWithStatus uniqueObjPath("lto-llvm.o"); if (uniqueObjPath.createTemporaryFileOnDisk(false, &errMsg)) { uniqueObjPath.eraseFromDisk(); return true; } sys::RemoveFileOnSignal(uniqueObjPath); // generate object file bool genResult = false; tool_output_file objFile(uniqueObjPath.c_str(), errMsg); if (!errMsg.empty()) { uniqueObjPath.eraseFromDisk(); return true; } genResult = this->generateObjectFile(objFile.os(), errMsg); objFile.os().close(); if (objFile.os().has_error()) { objFile.os().clear_error(); uniqueObjPath.eraseFromDisk(); return true; } objFile.keep(); if (genResult) { uniqueObjPath.eraseFromDisk(); return true; } _nativeObjectPath = uniqueObjPath.str(); *name = _nativeObjectPath.c_str(); return false; } const void* LTOCodeGenerator::compile(size_t* length, std::string& errMsg) { const char *name; if (compile_to_file(&name, errMsg)) return NULL; // remove old buffer if compile() called twice delete _nativeObjectFile; // read .o file into memory buffer OwningPtr BuffPtr; if (error_code ec = MemoryBuffer::getFile(name, BuffPtr, -1, false)) { errMsg = ec.message(); sys::Path(_nativeObjectPath).eraseFromDisk(); return NULL; } _nativeObjectFile = BuffPtr.take(); // remove temp files sys::Path(_nativeObjectPath).eraseFromDisk(); // return buffer, unless error if (_nativeObjectFile == NULL) return NULL; *length = _nativeObjectFile->getBufferSize(); return _nativeObjectFile->getBufferStart(); } bool LTOCodeGenerator::determineTarget(std::string& errMsg) { if (_target != NULL) return false; std::string TripleStr = _linker.getModule()->getTargetTriple(); if (TripleStr.empty()) TripleStr = sys::getDefaultTargetTriple(); llvm::Triple Triple(TripleStr); // create target machine from info for merged modules const Target *march = TargetRegistry::lookupTarget(TripleStr, errMsg); if (march == NULL) return true; // The relocation model is actually a static member of TargetMachine and // needs to be set before the TargetMachine is instantiated. Reloc::Model RelocModel = Reloc::Default; switch (_codeModel) { case LTO_CODEGEN_PIC_MODEL_STATIC: RelocModel = Reloc::Static; break; case LTO_CODEGEN_PIC_MODEL_DYNAMIC: RelocModel = Reloc::PIC_; break; case LTO_CODEGEN_PIC_MODEL_DYNAMIC_NO_PIC: RelocModel = Reloc::DynamicNoPIC; break; } // construct LTOModule, hand over ownership of module and target SubtargetFeatures Features; Features.getDefaultSubtargetFeatures(Triple); std::string FeatureStr = Features.getString(); // Set a default CPU for Darwin triples. if (_mCpu.empty() && Triple.isOSDarwin()) { if (Triple.getArch() == llvm::Triple::x86_64) _mCpu = "core2"; else if (Triple.getArch() == llvm::Triple::x86) _mCpu = "yonah"; } TargetOptions Options; LTOModule::getTargetOptions(Options); _target = march->createTargetMachine(TripleStr, _mCpu, FeatureStr, Options, RelocModel, CodeModel::Default, CodeGenOpt::Aggressive); return false; } void LTOCodeGenerator:: applyRestriction(GlobalValue &GV, std::vector &mustPreserveList, SmallPtrSet &asmUsed, Mangler &mangler) { SmallString<64> Buffer; mangler.getNameWithPrefix(Buffer, &GV, false); if (GV.isDeclaration()) return; if (_mustPreserveSymbols.count(Buffer)) mustPreserveList.push_back(GV.getName().data()); if (_asmUndefinedRefs.count(Buffer)) asmUsed.insert(&GV); } static void findUsedValues(GlobalVariable *LLVMUsed, SmallPtrSet &UsedValues) { if (LLVMUsed == 0) return; ConstantArray *Inits = cast(LLVMUsed->getInitializer()); for (unsigned i = 0, e = Inits->getNumOperands(); i != e; ++i) if (GlobalValue *GV = dyn_cast(Inits->getOperand(i)->stripPointerCasts())) UsedValues.insert(GV); } void LTOCodeGenerator::applyScopeRestrictions() { if (_scopeRestrictionsDone) return; Module *mergedModule = _linker.getModule(); // Start off with a verification pass. PassManager passes; passes.add(createVerifierPass()); // mark which symbols can not be internalized MCContext Context(*_target->getMCAsmInfo(), *_target->getRegisterInfo(),NULL); Mangler mangler(Context, *_target->getDataLayout()); std::vector mustPreserveList; SmallPtrSet asmUsed; for (Module::iterator f = mergedModule->begin(), e = mergedModule->end(); f != e; ++f) applyRestriction(*f, mustPreserveList, asmUsed, mangler); for (Module::global_iterator v = mergedModule->global_begin(), e = mergedModule->global_end(); v != e; ++v) applyRestriction(*v, mustPreserveList, asmUsed, mangler); for (Module::alias_iterator a = mergedModule->alias_begin(), e = mergedModule->alias_end(); a != e; ++a) applyRestriction(*a, mustPreserveList, asmUsed, mangler); GlobalVariable *LLVMCompilerUsed = mergedModule->getGlobalVariable("llvm.compiler.used"); findUsedValues(LLVMCompilerUsed, asmUsed); if (LLVMCompilerUsed) LLVMCompilerUsed->eraseFromParent(); if (!asmUsed.empty()) { llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(_context); std::vector asmUsed2; for (SmallPtrSet::const_iterator i = asmUsed.begin(), e = asmUsed.end(); i !=e; ++i) { GlobalValue *GV = *i; Constant *c = ConstantExpr::getBitCast(GV, i8PTy); asmUsed2.push_back(c); } llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, asmUsed2.size()); LLVMCompilerUsed = new llvm::GlobalVariable(*mergedModule, ATy, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(ATy, asmUsed2), "llvm.compiler.used"); LLVMCompilerUsed->setSection("llvm.metadata"); } passes.add(createInternalizePass(mustPreserveList)); // apply scope restrictions passes.run(*mergedModule); _scopeRestrictionsDone = true; } /// Optimize merged modules using various IPO passes bool LTOCodeGenerator::generateObjectFile(raw_ostream &out, std::string &errMsg) { if (this->determineTarget(errMsg)) return true; Module* mergedModule = _linker.getModule(); // if options were requested, set them if (!_codegenOptions.empty()) cl::ParseCommandLineOptions(_codegenOptions.size(), const_cast(&_codegenOptions[0])); // mark which symbols can not be internalized this->applyScopeRestrictions(); // Instantiate the pass manager to organize the passes. PassManager passes; // Start off with a verification pass. passes.add(createVerifierPass()); // Add an appropriate DataLayout instance for this module... passes.add(new DataLayout(*_target->getDataLayout())); _target->addAnalysisPasses(passes); // Enabling internalize here would use its AllButMain variant. It // keeps only main if it exists and does nothing for libraries. Instead // we create the pass ourselves with the symbol list provided by the linker. if (!DisableOpt) { PassManagerBuilder().populateLTOPassManager(passes, /*Internalize=*/false, !DisableInline, DisableGVNLoadPRE); } // Make sure everything is still good. passes.add(createVerifierPass()); PassManager codeGenPasses; codeGenPasses.add(new DataLayout(*_target->getDataLayout())); _target->addAnalysisPasses(codeGenPasses); formatted_raw_ostream Out(out); // If the bitcode files contain ARC code and were compiled with optimization, // the ObjCARCContractPass must be run, so do it unconditionally here. codeGenPasses.add(createObjCARCContractPass()); if (_target->addPassesToEmitFile(codeGenPasses, Out, TargetMachine::CGFT_ObjectFile)) { errMsg = "target file type not supported"; return true; } // Run our queue of passes all at once now, efficiently. passes.run(*mergedModule); // Run the code generator, and write assembly file codeGenPasses.run(*mergedModule); return false; // success } /// setCodeGenDebugOptions - Set codegen debugging options to aid in debugging /// LTO problems. void LTOCodeGenerator::setCodeGenDebugOptions(const char *options) { for (std::pair o = getToken(options); !o.first.empty(); o = getToken(o.second)) { // ParseCommandLineOptions() expects argv[0] to be program name. Lazily add // that. if (_codegenOptions.empty()) _codegenOptions.push_back(strdup("libLTO")); _codegenOptions.push_back(strdup(o.first.str().c_str())); } }