//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes how to lower LLVM code to machine code. This has two // main components: // // 1. Which ValueTypes are natively supported by the target. // 2. Which operations are supported for supported ValueTypes. // // In addition it has a few other components, like information about FP // immediates. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETLOWERING_H #define LLVM_TARGET_TARGETLOWERING_H #include "llvm/Type.h" #include "llvm/CodeGen/ValueTypes.h" #include namespace llvm { class Function; class TargetMachine; class TargetData; class TargetRegisterClass; class SDNode; class SDOperand; class SelectionDAG; //===----------------------------------------------------------------------===// /// TargetLowering - This class defines information used to lower LLVM code to /// legal SelectionDAG operators that the target instruction selector can accept /// natively. /// /// This class also defines callbacks that targets must implement to lower /// target-specific constructs to SelectionDAG operators. /// class TargetLowering { public: /// LegalizeAction - This enum indicates whether operations are valid for a /// target, and if not, what action should be used to make them valid. enum LegalizeAction { Legal, // The target natively supports this operation. Promote, // This operation should be executed in a larger type. Expand, // Try to expand this to other ops, otherwise use a libcall. Custom, // Use the LowerOperation hook to implement custom lowering. }; enum OutOfRangeShiftAmount { Undefined, // Oversized shift amounts are undefined (default). Mask, // Shift amounts are auto masked (anded) to value size. Extend, // Oversized shift pulls in zeros or sign bits. }; enum SetCCResultValue { UndefinedSetCCResult, // SetCC returns a garbage/unknown extend. ZeroOrOneSetCCResult, // SetCC returns a zero extended result. ZeroOrNegativeOneSetCCResult, // SetCC returns a sign extended result. }; TargetLowering(TargetMachine &TM); virtual ~TargetLowering(); TargetMachine &getTargetMachine() const { return TM; } const TargetData &getTargetData() const { return TD; } bool isLittleEndian() const { return IsLittleEndian; } MVT::ValueType getPointerTy() const { return PointerTy; } MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; } OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; } /// isSetCCExpensive - Return true if the setcc operation is expensive for /// this target. bool isSetCCExpensive() const { return SetCCIsExpensive; } /// getSetCCResultTy - Return the ValueType of the result of setcc operations. /// MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; } /// getSetCCResultContents - For targets without boolean registers, this flag /// returns information about the contents of the high-bits in the setcc /// result register. SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;} /// getRegClassFor - Return the register class that should be used for the /// specified value type. This may only be called on legal types. TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const { TargetRegisterClass *RC = RegClassForVT[VT]; assert(RC && "This value type is not natively supported!"); return RC; } /// hasNativeSupportFor - Return true if the target has native support for the /// specified value type. This means that it has a register that directly /// holds it without promotions or expansions. bool hasNativeSupportFor(MVT::ValueType VT) const { return RegClassForVT[VT] != 0; } /// getTypeAction - Return how we should legalize values of this type, either /// it is already legal (return 'Legal') or we need to promote it to a larger /// type (return 'Promote'), or we need to expand it into multiple registers /// of smaller integer type (return 'Expand'). 'Custom' is not an option. LegalizeAction getTypeAction(MVT::ValueType VT) const { return (LegalizeAction)((ValueTypeActions >> (2*VT)) & 3); } unsigned getValueTypeActions() const { return ValueTypeActions; } /// getTypeToTransformTo - For types supported by the target, this is an /// identity function. For types that must be promoted to larger types, this /// returns the larger type to promote to. For types that are larger than the /// largest integer register, this contains one step in the expansion to get /// to the smaller register. MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const { return TransformToType[VT]; } typedef std::vector::const_iterator legal_fpimm_iterator; legal_fpimm_iterator legal_fpimm_begin() const { return LegalFPImmediates.begin(); } legal_fpimm_iterator legal_fpimm_end() const { return LegalFPImmediates.end(); } /// getOperationAction - Return how this operation should be LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const { return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3); } /// hasNativeSupportForOperation - Return true if this operation is legal for /// this type. /// bool hasNativeSupportForOperation(unsigned Op, MVT::ValueType VT) const { return getOperationAction(Op, VT) == Legal; } /// getTypeToPromoteTo - If the action for this operation is to promote, this /// method returns the ValueType to promote to. MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const { assert(getOperationAction(Op, VT) == Promote && "This operation isn't promoted!"); MVT::ValueType NVT = VT; do { NVT = (MVT::ValueType)(NVT+1); assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid && "Didn't find type to promote to!"); } while (!hasNativeSupportFor(NVT) || getOperationAction(Op, NVT) == Promote); return NVT; } /// getValueType - Return the MVT::ValueType corresponding to this LLVM type. /// This is fixed by the LLVM operations except for the pointer size. MVT::ValueType getValueType(const Type *Ty) const { switch (Ty->getTypeID()) { default: assert(0 && "Unknown type!"); case Type::VoidTyID: return MVT::isVoid; case Type::BoolTyID: return MVT::i1; case Type::UByteTyID: case Type::SByteTyID: return MVT::i8; case Type::ShortTyID: case Type::UShortTyID: return MVT::i16; case Type::IntTyID: case Type::UIntTyID: return MVT::i32; case Type::LongTyID: case Type::ULongTyID: return MVT::i64; case Type::FloatTyID: return MVT::f32; case Type::DoubleTyID: return MVT::f64; case Type::PointerTyID: return PointerTy; } } /// getNumElements - Return the number of registers that this ValueType will /// eventually require. This is always one for all non-integer types, is /// one for any types promoted to live in larger registers, but may be more /// than one for types (like i64) that are split into pieces. unsigned getNumElements(MVT::ValueType VT) const { return NumElementsForVT[VT]; } //===--------------------------------------------------------------------===// // TargetLowering Configuration Methods - These methods should be invoked by // the derived class constructor to configure this object for the target. // protected: /// setShiftAmountType - Describe the type that should be used for shift /// amounts. This type defaults to the pointer type. void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; } /// setSetCCResultType - Describe the type that shoudl be used as the result /// of a setcc operation. This defaults to the pointer type. void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; } /// setSetCCResultContents - Specify how the target extends the result of a /// setcc operation in a register. void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; } /// setShiftAmountFlavor - Describe how the target handles out of range shift /// amounts. void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) { ShiftAmtHandling = OORSA; } /// setSetCCIxExpensive - This is a short term hack for targets that codegen /// setcc as a conditional branch. This encourages the code generator to fold /// setcc operations into other operations if possible. void setSetCCIsExpensive() { SetCCIsExpensive = true; } /// addRegisterClass - Add the specified register class as an available /// regclass for the specified value type. This indicates the selector can /// handle values of that class natively. void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) { AvailableRegClasses.push_back(std::make_pair(VT, RC)); RegClassForVT[VT] = RC; } /// computeRegisterProperties - Once all of the register classes are added, /// this allows us to compute derived properties we expose. void computeRegisterProperties(); /// setOperationAction - Indicate that the specified operation does not work /// with the specified type and indicate what to do about it. void setOperationAction(unsigned Op, MVT::ValueType VT, LegalizeAction Action) { assert(VT < 16 && Op < sizeof(OpActions)/sizeof(OpActions[0]) && "Table isn't big enough!"); OpActions[Op] |= Action << VT*2; } /// addLegalFPImmediate - Indicate that this target can instruction select /// the specified FP immediate natively. void addLegalFPImmediate(double Imm) { LegalFPImmediates.push_back(Imm); } public: //===--------------------------------------------------------------------===// // Lowering methods - These methods must be implemented by targets so that // the SelectionDAGLowering code knows how to lower these. // /// LowerArguments - This hook must be implemented to indicate how we should /// lower the arguments for the specified function, into the specified DAG. virtual std::vector LowerArguments(Function &F, SelectionDAG &DAG) = 0; /// LowerCallTo - This hook lowers an abstract call to a function into an /// actual call. This returns a pair of operands. The first element is the /// return value for the function (if RetTy is not VoidTy). The second /// element is the outgoing token chain. typedef std::vector > ArgListTy; virtual std::pair LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CallingConv, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) = 0; /// LowerVAStart - This lowers the llvm.va_start intrinsic. If not /// implemented, this method prints a message and aborts. virtual std::pair LowerVAStart(SDOperand Chain, SelectionDAG &DAG); /// LowerVAEnd - This lowers llvm.va_end and returns the resultant chain. If /// not implemented, this defaults to a noop. virtual SDOperand LowerVAEnd(SDOperand Chain, SDOperand L, SelectionDAG &DAG); /// LowerVACopy - This lowers llvm.va_copy and returns the resultant /// value/chain pair. If not implemented, this defaults to returning the /// input operand. virtual std::pair LowerVACopy(SDOperand Chain, SDOperand L, SelectionDAG &DAG); /// LowerVAArgNext - This lowers the vaarg and vanext instructions (depending /// on whether the first argument is true). If not implemented, this prints a /// message and aborts. virtual std::pair LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, const Type *ArgTy, SelectionDAG &DAG); /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or /// llvm.frameaddress (depending on the value of the first argument). The /// return values are the result pointer and the resultant token chain. If /// not implemented, both of these intrinsics will return null. virtual std::pair LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, SelectionDAG &DAG); /// LowerOperation - For operations that are unsupported by the target, and /// which are registered to use 'custom' lowering. This callback is invoked. /// If the target has no operations that require custom lowering, it need not /// implement this. The default implementation of this aborts. virtual SDOperand LowerOperation(SDOperand Op); private: TargetMachine &TM; const TargetData &TD; /// IsLittleEndian - True if this is a little endian target. /// bool IsLittleEndian; /// PointerTy - The type to use for pointers, usually i32 or i64. /// MVT::ValueType PointerTy; /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever /// PointerTy is. MVT::ValueType ShiftAmountTy; OutOfRangeShiftAmount ShiftAmtHandling; /// SetCCIsExpensive - This is a short term hack for targets that codegen /// setcc as a conditional branch. This encourages the code generator to fold /// setcc operations into other operations if possible. bool SetCCIsExpensive; /// SetCCResultTy - The type that SetCC operations use. This defaults to the /// PointerTy. MVT::ValueType SetCCResultTy; /// SetCCResultContents - Information about the contents of the high-bits in /// the result of a setcc comparison operation. SetCCResultValue SetCCResultContents; /// RegClassForVT - This indicates the default register class to use for /// each ValueType the target supports natively. TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; unsigned char NumElementsForVT[MVT::LAST_VALUETYPE]; /// ValueTypeActions - This is a bitvector that contains two bits for each /// value type, where the two bits correspond to the LegalizeAction enum. /// This can be queried with "getTypeAction(VT)". unsigned ValueTypeActions; /// TransformToType - For any value types we are promoting or expanding, this /// contains the value type that we are changing to. For Expanded types, this /// contains one step of the expand (e.g. i64 -> i32), even if there are /// multiple steps required (e.g. i64 -> i16). For types natively supported /// by the system, this holds the same type (e.g. i32 -> i32). MVT::ValueType TransformToType[MVT::LAST_VALUETYPE]; /// OpActions - For each operation and each value type, keep a LegalizeAction /// that indicates how instruction selection should deal with the operation. /// Most operations are Legal (aka, supported natively by the target), but /// operations that are not should be described. Note that operations on /// non-legal value types are not described here. unsigned OpActions[128]; std::vector LegalFPImmediates; std::vector > AvailableRegClasses; }; } // end llvm namespace #endif