//===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the MachineSSAUpdater class. It's based on SSAUpdater // class in lib/Transforms/Utils. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineSSAUpdater.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; typedef DenseMap AvailableValsTy; typedef std::vector > IncomingPredInfoTy; static AvailableValsTy &getAvailableVals(void *AV) { return *static_cast(AV); } static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) { return *static_cast(IPI); } MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF, SmallVectorImpl *NewPHI) : AV(0), IPI(0), InsertedPHIs(NewPHI) { TII = MF.getTarget().getInstrInfo(); MRI = &MF.getRegInfo(); } MachineSSAUpdater::~MachineSSAUpdater() { delete &getAvailableVals(AV); delete &getIncomingPredInfo(IPI); } /// Initialize - Reset this object to get ready for a new set of SSA /// updates. ProtoValue is the value used to name PHI nodes. void MachineSSAUpdater::Initialize(unsigned V) { if (AV == 0) AV = new AvailableValsTy(); else getAvailableVals(AV).clear(); if (IPI == 0) IPI = new IncomingPredInfoTy(); else getIncomingPredInfo(IPI).clear(); VR = V; VRC = MRI->getRegClass(VR); } /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for /// the specified block. bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const { return getAvailableVals(AV).count(BB); } /// AddAvailableValue - Indicate that a rewritten value is available in the /// specified block with the specified value. void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) { getAvailableVals(AV)[BB] = V; } /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is /// live at the end of the specified block. unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) { return GetValueAtEndOfBlockInternal(BB); } /// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define /// a value of the given register class at the start of the specified basic /// block. It returns the virtual register defined by the instruction. static MachineInstr *InsertNewDef(unsigned Opcode, MachineBasicBlock *BB, MachineBasicBlock::iterator I, const TargetRegisterClass *RC, MachineRegisterInfo *MRI, const TargetInstrInfo *TII) { unsigned NewVR = MRI->createVirtualRegister(RC); return BuildMI(*BB, I, I->getDebugLoc(), TII->get(Opcode), NewVR); } /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that /// is live in the middle of the specified block. /// /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one /// important case: if there is a definition of the rewritten value after the /// 'use' in BB. Consider code like this: /// /// X1 = ... /// SomeBB: /// use(X) /// X2 = ... /// br Cond, SomeBB, OutBB /// /// In this case, there are two values (X1 and X2) added to the AvailableVals /// set by the client of the rewriter, and those values are both live out of /// their respective blocks. However, the use of X happens in the *middle* of /// a block. Because of this, we need to insert a new PHI node in SomeBB to /// merge the appropriate values, and this value isn't live out of the block. /// unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) { // If there is no definition of the renamed variable in this block, just use // GetValueAtEndOfBlock to do our work. if (!getAvailableVals(AV).count(BB)) return GetValueAtEndOfBlock(BB); // If there are no predecessors, just return undef. if (BB->pred_empty()) return ~0U; // Sentinel value representing undef. // Otherwise, we have the hard case. Get the live-in values for each // predecessor. SmallVector, 8> PredValues; unsigned SingularValue = 0; bool isFirstPred = true; for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(), E = BB->pred_end(); PI != E; ++PI) { MachineBasicBlock *PredBB = *PI; unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB); PredValues.push_back(std::make_pair(PredBB, PredVal)); // Compute SingularValue. if (isFirstPred) { SingularValue = PredVal; isFirstPred = false; } else if (PredVal != SingularValue) SingularValue = 0; } // Otherwise, if all the merged values are the same, just use it. if (SingularValue != 0) return SingularValue; // Otherwise, we do need a PHI: insert one now. MachineInstr *InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB, BB->front(), VRC, MRI, TII); // Fill in all the predecessors of the PHI. MachineInstrBuilder MIB(InsertedPHI); for (unsigned i = 0, e = PredValues.size(); i != e; ++i) MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first); // See if the PHI node can be merged to a single value. This can happen in // loop cases when we get a PHI of itself and one other value. if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) { InsertedPHI->eraseFromParent(); return ConstVal; } // If the client wants to know about all new instructions, tell it. if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n"); return InsertedPHI->getOperand(0).getReg(); } static MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI, MachineOperand *U) { for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { if (&MI->getOperand(i) == U) return MI->getOperand(i+1).getMBB(); } llvm_unreachable("MachineOperand::getParent() failure?"); return 0; } /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, /// which use their value in the corresponding predecessor. void MachineSSAUpdater::RewriteUse(MachineOperand &U) { MachineInstr *UseMI = U.getParent(); unsigned NewVR = 0; if (UseMI->getOpcode() == TargetInstrInfo::PHI) { MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U); NewVR = GetValueAtEndOfBlock(SourceBB); } else { NewVR = GetValueInMiddleOfBlock(UseMI->getParent()); } if (NewVR == ~0U) { // Insert an implicit_def to represent an undef value. MachineInstr *NewDef = InsertNewDef(TargetInstrInfo::IMPLICIT_DEF, UseMI->getParent(), UseMI, VRC,MRI,TII); NewVR = NewDef->getOperand(0).getReg(); } U.setReg(NewVR); } /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry /// for the specified BB and if so, return it. If not, construct SSA form by /// walking predecessors inserting PHI nodes as needed until we get to a block /// where the value is available. /// unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){ AvailableValsTy &AvailableVals = getAvailableVals(AV); // Query AvailableVals by doing an insertion of null. std::pair InsertRes = AvailableVals.insert(std::make_pair(BB, 0)); // Handle the case when the insertion fails because we have already seen BB. if (!InsertRes.second) { // If the insertion failed, there are two cases. The first case is that the // value is already available for the specified block. If we get this, just // return the value. if (InsertRes.first->second != 0) return InsertRes.first->second; // Otherwise, if the value we find is null, then this is the value is not // known but it is being computed elsewhere in our recursion. This means // that we have a cycle. Handle this by inserting a PHI node and returning // it. When we get back to the first instance of the recursion we will fill // in the PHI node. MachineInstr *NewPHI = InsertNewDef(TargetInstrInfo::PHI, BB, BB->front(), VRC, MRI,TII); unsigned NewVR = NewPHI->getOperand(0).getReg(); InsertRes.first->second = NewVR; return NewVR; } // If there are no predecessors, then we must have found an unreachable block // just return 'undef'. Since there are no predecessors, InsertRes must not // be invalidated. if (BB->pred_empty()) return InsertRes.first->second = ~0U; // Sentinel value representing undef. // Okay, the value isn't in the map and we just inserted a null in the entry // to indicate that we're processing the block. Since we have no idea what // value is in this block, we have to recurse through our predecessors. // // While we're walking our predecessors, we keep track of them in a vector, // then insert a PHI node in the end if we actually need one. We could use a // smallvector here, but that would take a lot of stack space for every level // of the recursion, just use IncomingPredInfo as an explicit stack. IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI); unsigned FirstPredInfoEntry = IncomingPredInfo.size(); // As we're walking the predecessors, keep track of whether they are all // producing the same value. If so, this value will capture it, if not, it // will get reset to null. We distinguish the no-predecessor case explicitly // below. unsigned SingularValue = 0; bool isFirstPred = true; for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(), E = BB->pred_end(); PI != E; ++PI) { MachineBasicBlock *PredBB = *PI; unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB); IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal)); // Compute SingularValue. if (isFirstPred) { SingularValue = PredVal; isFirstPred = false; } else if (PredVal != SingularValue) SingularValue = 0; } /// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If /// this block is involved in a loop, a no-entry PHI node will have been /// inserted as InsertedVal. Otherwise, we'll still have the null we inserted /// above. unsigned InsertedVal = AvailableVals[BB]; // If all the predecessor values are the same then we don't need to insert a // PHI. This is the simple and common case. if (SingularValue) { // If a PHI node got inserted, replace it with the singlar value and delete // it. if (InsertedVal) { MachineInstr *OldVal = MRI->getVRegDef(InsertedVal); // Be careful about dead loops. These RAUW's also update InsertedVal. assert(InsertedVal != SingularValue && "Dead loop?"); MRI->replaceRegWith(InsertedVal, SingularValue); OldVal->eraseFromParent(); } else { InsertedVal = SingularValue; } // Drop the entries we added in IncomingPredInfo to restore the stack. IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry, IncomingPredInfo.end()); return InsertedVal; } // Otherwise, we do need a PHI: insert one now if we don't already have one. MachineInstr *InsertedPHI; if (InsertedVal == 0) { InsertedPHI = InsertNewDef(TargetInstrInfo::PHI, BB, BB->front(), VRC, MRI, TII); InsertedVal = InsertedPHI->getOperand(0).getReg(); } else { InsertedPHI = MRI->getVRegDef(InsertedVal); } // Fill in all the predecessors of the PHI. bool IsUndef = true; MachineInstrBuilder MIB(InsertedPHI); for (IncomingPredInfoTy::iterator I = IncomingPredInfo.begin()+FirstPredInfoEntry, E = IncomingPredInfo.end(); I != E; ++I) { if (I->second == ~0U) continue; IsUndef = false; MIB.addReg(I->second).addMBB(I->first); } // Drop the entries we added in IncomingPredInfo to restore the stack. IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry, IncomingPredInfo.end()); // See if the PHI node can be merged to a single value. This can happen in // loop cases when we get a PHI of itself and one other value. if (IsUndef) { InsertedPHI->eraseFromParent(); InsertedVal = ~0U; } else if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) { MRI->replaceRegWith(InsertedVal, ConstVal); InsertedPHI->eraseFromParent(); InsertedVal = ConstVal; } else { DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n"); // If the client wants to know about all new instructions, tell it. if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); } return InsertedVal; }