//===- Unix/Memory.cpp - Generic UNIX System Configuration ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines some functions for various memory management utilities. // //===----------------------------------------------------------------------===// #include "Unix.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Process.h" #ifdef HAVE_SYS_MMAN_H #include <sys/mman.h> #endif #ifdef __APPLE__ #include <mach/mach.h> #endif #if defined(__mips__) # if defined(__OpenBSD__) # include <mips64/sysarch.h> # else # include <sys/cachectl.h> # endif #endif #ifdef __APPLE__ extern "C" void sys_icache_invalidate(const void *Addr, size_t len); #else extern "C" void __clear_cache(void *, void*); #endif namespace { int getPosixProtectionFlags(unsigned Flags) { switch (Flags) { case llvm::sys::Memory::MF_READ: return PROT_READ; case llvm::sys::Memory::MF_WRITE: return PROT_WRITE; case llvm::sys::Memory::MF_READ|llvm::sys::Memory::MF_WRITE: return PROT_READ | PROT_WRITE; case llvm::sys::Memory::MF_READ|llvm::sys::Memory::MF_EXEC: return PROT_READ | PROT_EXEC; case llvm::sys::Memory::MF_READ | llvm::sys::Memory::MF_WRITE | llvm::sys::Memory::MF_EXEC: return PROT_READ | PROT_WRITE | PROT_EXEC; case llvm::sys::Memory::MF_EXEC: #if defined(__FreeBSD__) // On PowerPC, having an executable page that has no read permission // can have unintended consequences. The function InvalidateInstruction- // Cache uses instructions dcbf and icbi, both of which are treated by // the processor as loads. If the page has no read permissions, // executing these instructions will result in a segmentation fault. // Somehow, this problem is not present on Linux, but it does happen // on FreeBSD. return PROT_READ | PROT_EXEC; #else return PROT_EXEC; #endif default: llvm_unreachable("Illegal memory protection flag specified!"); } // Provide a default return value as required by some compilers. return PROT_NONE; } } // namespace namespace llvm { namespace sys { MemoryBlock Memory::allocateMappedMemory(size_t NumBytes, const MemoryBlock *const NearBlock, unsigned PFlags, std::error_code &EC) { EC = std::error_code(); if (NumBytes == 0) return MemoryBlock(); static const size_t PageSize = process::get_self()->page_size(); const size_t NumPages = (NumBytes+PageSize-1)/PageSize; int fd = -1; #ifdef NEED_DEV_ZERO_FOR_MMAP static int zero_fd = open("/dev/zero", O_RDWR); if (zero_fd == -1) { EC = std::error_code(errno, std::generic_category()); return MemoryBlock(); } fd = zero_fd; #endif int MMFlags = MAP_PRIVATE | #ifdef HAVE_MMAP_ANONYMOUS MAP_ANONYMOUS #else MAP_ANON #endif ; // Ends statement above int Protect = getPosixProtectionFlags(PFlags); // Use any near hint and the page size to set a page-aligned starting address uintptr_t Start = NearBlock ? reinterpret_cast<uintptr_t>(NearBlock->base()) + NearBlock->size() : 0; if (Start && Start % PageSize) Start += PageSize - Start % PageSize; void *Addr = ::mmap(reinterpret_cast<void*>(Start), PageSize*NumPages, Protect, MMFlags, fd, 0); if (Addr == MAP_FAILED) { if (NearBlock) //Try again without a near hint return allocateMappedMemory(NumBytes, nullptr, PFlags, EC); EC = std::error_code(errno, std::generic_category()); return MemoryBlock(); } MemoryBlock Result; Result.Address = Addr; Result.Size = NumPages*PageSize; if (PFlags & MF_EXEC) Memory::InvalidateInstructionCache(Result.Address, Result.Size); return Result; } std::error_code Memory::releaseMappedMemory(MemoryBlock &M) { if (M.Address == nullptr || M.Size == 0) return std::error_code(); if (0 != ::munmap(M.Address, M.Size)) return std::error_code(errno, std::generic_category()); M.Address = nullptr; M.Size = 0; return std::error_code(); } std::error_code Memory::protectMappedMemory(const MemoryBlock &M, unsigned Flags) { if (M.Address == nullptr || M.Size == 0) return std::error_code(); if (!Flags) return std::error_code(EINVAL, std::generic_category()); int Protect = getPosixProtectionFlags(Flags); int Result = ::mprotect(M.Address, M.Size, Protect); if (Result != 0) return std::error_code(errno, std::generic_category()); if (Flags & MF_EXEC) Memory::InvalidateInstructionCache(M.Address, M.Size); return std::error_code(); } /// AllocateRWX - Allocate a slab of memory with read/write/execute /// permissions. This is typically used for JIT applications where we want /// to emit code to the memory then jump to it. Getting this type of memory /// is very OS specific. /// MemoryBlock Memory::AllocateRWX(size_t NumBytes, const MemoryBlock* NearBlock, std::string *ErrMsg) { if (NumBytes == 0) return MemoryBlock(); size_t PageSize = process::get_self()->page_size(); size_t NumPages = (NumBytes+PageSize-1)/PageSize; int fd = -1; #ifdef NEED_DEV_ZERO_FOR_MMAP static int zero_fd = open("/dev/zero", O_RDWR); if (zero_fd == -1) { MakeErrMsg(ErrMsg, "Can't open /dev/zero device"); return MemoryBlock(); } fd = zero_fd; #endif int flags = MAP_PRIVATE | #ifdef HAVE_MMAP_ANONYMOUS MAP_ANONYMOUS #else MAP_ANON #endif ; void* start = NearBlock ? (unsigned char*)NearBlock->base() + NearBlock->size() : nullptr; #if defined(__APPLE__) && (defined(__arm__) || defined(__arm64__)) void *pa = ::mmap(start, PageSize*NumPages, PROT_READ|PROT_EXEC, flags, fd, 0); #else void *pa = ::mmap(start, PageSize*NumPages, PROT_READ|PROT_WRITE|PROT_EXEC, flags, fd, 0); #endif if (pa == MAP_FAILED) { if (NearBlock) //Try again without a near hint return AllocateRWX(NumBytes, nullptr); MakeErrMsg(ErrMsg, "Can't allocate RWX Memory"); return MemoryBlock(); } #if defined(__APPLE__) && (defined(__arm__) || defined(__arm64__)) kern_return_t kr = vm_protect(mach_task_self(), (vm_address_t)pa, (vm_size_t)(PageSize*NumPages), 0, VM_PROT_READ | VM_PROT_EXECUTE | VM_PROT_COPY); if (KERN_SUCCESS != kr) { MakeErrMsg(ErrMsg, "vm_protect max RX failed"); return MemoryBlock(); } kr = vm_protect(mach_task_self(), (vm_address_t)pa, (vm_size_t)(PageSize*NumPages), 0, VM_PROT_READ | VM_PROT_WRITE); if (KERN_SUCCESS != kr) { MakeErrMsg(ErrMsg, "vm_protect RW failed"); return MemoryBlock(); } #endif MemoryBlock result; result.Address = pa; result.Size = NumPages*PageSize; return result; } bool Memory::ReleaseRWX(MemoryBlock &M, std::string *ErrMsg) { if (M.Address == nullptr || M.Size == 0) return false; if (0 != ::munmap(M.Address, M.Size)) return MakeErrMsg(ErrMsg, "Can't release RWX Memory"); return false; } bool Memory::setWritable (MemoryBlock &M, std::string *ErrMsg) { #if defined(__APPLE__) && (defined(__arm__) || defined(__arm64__)) if (M.Address == 0 || M.Size == 0) return false; Memory::InvalidateInstructionCache(M.Address, M.Size); kern_return_t kr = vm_protect(mach_task_self(), (vm_address_t)M.Address, (vm_size_t)M.Size, 0, VM_PROT_READ | VM_PROT_WRITE); return KERN_SUCCESS == kr; #else return true; #endif } bool Memory::setExecutable (MemoryBlock &M, std::string *ErrMsg) { #if defined(__APPLE__) && (defined(__arm__) || defined(__arm64__)) if (M.Address == 0 || M.Size == 0) return false; Memory::InvalidateInstructionCache(M.Address, M.Size); kern_return_t kr = vm_protect(mach_task_self(), (vm_address_t)M.Address, (vm_size_t)M.Size, 0, VM_PROT_READ | VM_PROT_EXECUTE | VM_PROT_COPY); return KERN_SUCCESS == kr; #elif defined(__arm__) || defined(__aarch64__) Memory::InvalidateInstructionCache(M.Address, M.Size); return true; #else return true; #endif } bool Memory::setRangeWritable(const void *Addr, size_t Size) { #if defined(__APPLE__) && (defined(__arm__) || defined(__arm64__)) kern_return_t kr = vm_protect(mach_task_self(), (vm_address_t)Addr, (vm_size_t)Size, 0, VM_PROT_READ | VM_PROT_WRITE); return KERN_SUCCESS == kr; #else return true; #endif } bool Memory::setRangeExecutable(const void *Addr, size_t Size) { #if defined(__APPLE__) && (defined(__arm__) || defined(__arm64__)) kern_return_t kr = vm_protect(mach_task_self(), (vm_address_t)Addr, (vm_size_t)Size, 0, VM_PROT_READ | VM_PROT_EXECUTE | VM_PROT_COPY); return KERN_SUCCESS == kr; #else return true; #endif } /// InvalidateInstructionCache - Before the JIT can run a block of code /// that has been emitted it must invalidate the instruction cache on some /// platforms. void Memory::InvalidateInstructionCache(const void *Addr, size_t Len) { // icache invalidation for PPC and ARM. #if defined(__APPLE__) # if (defined(__POWERPC__) || defined (__ppc__) || \ defined(_POWER) || defined(_ARCH_PPC) || defined(__arm__) || \ defined(__arm64__)) sys_icache_invalidate(const_cast<void *>(Addr), Len); # endif #else # if (defined(__POWERPC__) || defined (__ppc__) || \ defined(_POWER) || defined(_ARCH_PPC)) && defined(__GNUC__) const size_t LineSize = 32; const intptr_t Mask = ~(LineSize - 1); const intptr_t StartLine = ((intptr_t) Addr) & Mask; const intptr_t EndLine = ((intptr_t) Addr + Len + LineSize - 1) & Mask; for (intptr_t Line = StartLine; Line < EndLine; Line += LineSize) asm volatile("dcbf 0, %0" : : "r"(Line)); asm volatile("sync"); for (intptr_t Line = StartLine; Line < EndLine; Line += LineSize) asm volatile("icbi 0, %0" : : "r"(Line)); asm volatile("isync"); # elif (defined(__arm__) || defined(__aarch64__)) && defined(__GNUC__) // FIXME: Can we safely always call this for __GNUC__ everywhere? const char *Start = static_cast<const char *>(Addr); const char *End = Start + Len; __clear_cache(const_cast<char *>(Start), const_cast<char *>(End)); # elif defined(__mips__) const char *Start = static_cast<const char *>(Addr); # if defined(ANDROID) // The declaration of "cacheflush" in Android bionic: // extern int cacheflush(long start, long end, long flags); const char *End = Start + Len; long LStart = reinterpret_cast<long>(const_cast<char *>(Start)); long LEnd = reinterpret_cast<long>(const_cast<char *>(End)); cacheflush(LStart, LEnd, BCACHE); # else cacheflush(const_cast<char *>(Start), Len, BCACHE); # endif # endif #endif // end apple ValgrindDiscardTranslations(Addr, Len); } } // namespace sys } // namespace llvm