//===-- PPC64ISelSimple.cpp - A simple instruction selector for PowerPC ---===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel" #include "PowerPC.h" #include "PowerPCInstrBuilder.h" #include "PowerPCInstrInfo.h" #include "PPC64TargetMachine.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include using namespace llvm; namespace { Statistic<> GEPFolds("ppc64-codegen", "Number of GEPs folded"); /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic /// PPC Representation. /// enum TypeClass { cByte, cShort, cInt, cFP32, cFP64, cLong }; } /// getClass - Turn a primitive type into a "class" number which is based on the /// size of the type, and whether or not it is floating point. /// static inline TypeClass getClass(const Type *Ty) { switch (Ty->getTypeID()) { case Type::SByteTyID: case Type::UByteTyID: return cByte; // Byte operands are class #0 case Type::ShortTyID: case Type::UShortTyID: return cShort; // Short operands are class #1 case Type::IntTyID: case Type::UIntTyID: return cInt; // Ints are class #2 case Type::FloatTyID: return cFP32; // Single float is #3 case Type::DoubleTyID: return cFP64; // Double Point is #4 case Type::PointerTyID: case Type::LongTyID: case Type::ULongTyID: return cLong; // Longs and pointers are class #5 default: assert(0 && "Invalid type to getClass!"); return cByte; // not reached } } // getClassB - Just like getClass, but treat boolean values as ints. static inline TypeClass getClassB(const Type *Ty) { if (Ty == Type::BoolTy) return cInt; return getClass(Ty); } namespace { struct ISel : public FunctionPass, InstVisitor { PPC64TargetMachine &TM; MachineFunction *F; // The function we are compiling into MachineBasicBlock *BB; // The current MBB we are compiling int VarArgsFrameIndex; // FrameIndex for start of varargs area std::map RegMap; // Mapping between Values and SSA Regs // External functions used in the Module Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn, *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn; // MBBMap - Mapping between LLVM BB -> Machine BB std::map MBBMap; // AllocaMap - Mapping from fixed sized alloca instructions to the // FrameIndex for the alloca. std::map AllocaMap; // Target configuration data const unsigned ParameterSaveAreaOffset, MaxArgumentStackSpace; ISel(TargetMachine &tm) : TM(reinterpret_cast(tm)), F(0), BB(0), ParameterSaveAreaOffset(24), MaxArgumentStackSpace(32) {} bool doInitialization(Module &M) { // Add external functions that we may call Type *i = Type::IntTy; Type *d = Type::DoubleTy; Type *f = Type::FloatTy; Type *l = Type::LongTy; Type *ul = Type::ULongTy; Type *voidPtr = PointerType::get(Type::SByteTy); // float fmodf(float, float); fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0); // double fmod(double, double); fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0); // int __cmpdi2(long, long); __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0); // long __moddi3(long, long); __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0); // long __divdi3(long, long); __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0); // unsigned long __umoddi3(unsigned long, unsigned long); __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0); // unsigned long __udivdi3(unsigned long, unsigned long); __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0); // long __fixsfdi(float) __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0); // long __fixdfdi(double) __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0); // unsigned long __fixunssfdi(float) __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0); // unsigned long __fixunsdfdi(double) __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0); // float __floatdisf(long) __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0); // double __floatdidf(long) __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0); // void* malloc(size_t) mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0); // void free(void*) freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0); return false; } /// runOnFunction - Top level implementation of instruction selection for /// the entire function. /// bool runOnFunction(Function &Fn) { // First pass over the function, lower any unknown intrinsic functions // with the IntrinsicLowering class. LowerUnknownIntrinsicFunctionCalls(Fn); F = &MachineFunction::construct(&Fn, TM); // Create all of the machine basic blocks for the function... for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); BB = &F->front(); // Copy incoming arguments off of the stack... LoadArgumentsToVirtualRegs(Fn); // Instruction select everything except PHI nodes visit(Fn); // Select the PHI nodes SelectPHINodes(); RegMap.clear(); MBBMap.clear(); AllocaMap.clear(); F = 0; // We always build a machine code representation for the function return true; } virtual const char *getPassName() const { return "PowerPC Simple Instruction Selection"; } /// visitBasicBlock - This method is called when we are visiting a new basic /// block. This simply creates a new MachineBasicBlock to emit code into /// and adds it to the current MachineFunction. Subsequent visit* for /// instructions will be invoked for all instructions in the basic block. /// void visitBasicBlock(BasicBlock &LLVM_BB) { BB = MBBMap[&LLVM_BB]; } /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the /// function, lowering any calls to unknown intrinsic functions into the /// equivalent LLVM code. /// void LowerUnknownIntrinsicFunctionCalls(Function &F); /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function /// from the stack into virtual registers. /// void LoadArgumentsToVirtualRegs(Function &F); /// SelectPHINodes - Insert machine code to generate phis. This is tricky /// because we have to generate our sources into the source basic blocks, /// not the current one. /// void SelectPHINodes(); // Visitation methods for various instructions. These methods simply emit // fixed PowerPC code for each instruction. // Control flow operators void visitReturnInst(ReturnInst &RI); void visitBranchInst(BranchInst &BI); struct ValueRecord { Value *Val; unsigned Reg; const Type *Ty; ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} }; // This struct is for recording the necessary operations to emit the GEP struct CollapsedGepOp { bool isMul; Value *index; ConstantSInt *size; CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) : isMul(mul), index(i), size(s) {} }; void doCall(const ValueRecord &Ret, MachineInstr *CallMI, const std::vector &Args, bool isVarArg); void visitCallInst(CallInst &I); void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); // Arithmetic operators void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } void visitMul(BinaryOperator &B); void visitDiv(BinaryOperator &B) { visitDivRem(B); } void visitRem(BinaryOperator &B) { visitDivRem(B); } void visitDivRem(BinaryOperator &B); // Bitwise operators void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } // Comparison operators... void visitSetCondInst(SetCondInst &I); unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI); void visitSelectInst(SelectInst &SI); // Memory Instructions void visitLoadInst(LoadInst &I); void visitStoreInst(StoreInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitAllocaInst(AllocaInst &I); void visitMallocInst(MallocInst &I); void visitFreeInst(FreeInst &I); // Other operators void visitShiftInst(ShiftInst &I); void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass void visitCastInst(CastInst &I); void visitVANextInst(VANextInst &I); void visitVAArgInst(VAArgInst &I); void visitInstruction(Instruction &I) { std::cerr << "Cannot instruction select: " << I; abort(); } /// promote32 - Make a value 32-bits wide, and put it somewhere. /// void promote32(unsigned targetReg, const ValueRecord &VR); /// emitGEPOperation - Common code shared between visitGetElementPtrInst and /// constant expression GEP support. /// void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Src, User::op_iterator IdxBegin, User::op_iterator IdxEnd, unsigned TargetReg, bool CollapseRemainder, ConstantSInt **Remainder, unsigned *PendingAddReg); /// emitCastOperation - Common code shared between visitCastInst and /// constant expression cast support. /// void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, Value *Src, const Type *DestTy, unsigned TargetReg); /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary /// and constant expression support. /// void emitSimpleBinaryOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned TargetReg); /// emitBinaryFPOperation - This method handles emission of floating point /// Add (0), Sub (1), Mul (2), and Div (3) operations. void emitBinaryFPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned TargetReg); void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned TargetReg); void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned DestReg, Value *Op0, Value *Op1); /// doMultiplyConst - This method will multiply the value in Op0Reg by the /// value of the ContantInt *CI void doMultiplyConst(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned DestReg, Value *Op0, ConstantInt *CI); void emitDivRemOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, bool isDiv, unsigned TargetReg); /// emitSetCCOperation - Common code shared between visitSetCondInst and /// constant expression support. /// void emitSetCCOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned Opcode, unsigned TargetReg); /// emitShiftOperation - Common code shared between visitShiftInst and /// constant expression support. /// void emitShiftOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op, Value *ShiftAmount, bool isLeftShift, const Type *ResultTy, unsigned DestReg); /// emitSelectOperation - Common code shared between visitSelectInst and the /// constant expression support. /// void emitSelectOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Cond, Value *TrueVal, Value *FalseVal, unsigned DestReg); /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void copyConstantToRegister(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, Constant *C, unsigned Reg); void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, unsigned LHS, unsigned RHS); /// makeAnotherReg - This method returns the next register number we haven't /// yet used. /// unsigned makeAnotherReg(const Type *Ty) { assert(dynamic_cast(TM.getRegisterInfo()) && "Current target doesn't have PPC reg info??"); const PPC64RegisterInfo *PPCRI = static_cast(TM.getRegisterInfo()); // Add the mapping of regnumber => reg class to MachineFunction const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty); return F->getSSARegMap()->createVirtualRegister(RC); } /// getReg - This method turns an LLVM value into a register number. /// unsigned getReg(Value &V) { return getReg(&V); } // Allow references unsigned getReg(Value *V) { // Just append to the end of the current bb. MachineBasicBlock::iterator It = BB->end(); return getReg(V, BB, It); } unsigned getReg(Value *V, MachineBasicBlock *MBB, MachineBasicBlock::iterator IPt); /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt /// is okay to use as an immediate argument to a certain binary operation bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode); /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca /// that is to be statically allocated with the initial stack frame /// adjustment. unsigned getFixedSizedAllocaFI(AllocaInst *AI); }; } /// dyn_castFixedAlloca - If the specified value is a fixed size alloca /// instruction in the entry block, return it. Otherwise, return a null /// pointer. static AllocaInst *dyn_castFixedAlloca(Value *V) { if (AllocaInst *AI = dyn_cast(V)) { BasicBlock *BB = AI->getParent(); if (isa(AI->getArraySize()) && BB ==&BB->getParent()->front()) return AI; } return 0; } /// getReg - This method turns an LLVM value into a register number. /// unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB, MachineBasicBlock::iterator IPt) { if (Constant *C = dyn_cast(V)) { unsigned Reg = makeAnotherReg(V->getType()); copyConstantToRegister(MBB, IPt, C, Reg); return Reg; } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { unsigned Reg = makeAnotherReg(V->getType()); unsigned FI = getFixedSizedAllocaFI(AI); addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false); return Reg; } unsigned &Reg = RegMap[V]; if (Reg == 0) { Reg = makeAnotherReg(V->getType()); RegMap[V] = Reg; } return Reg; } /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt /// is okay to use as an immediate argument to a certain binary operator. /// /// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor. bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) { ConstantSInt *Op1Cs; ConstantUInt *Op1Cu; // ADDI, Compare, and non-indexed Load take SIMM bool cond1 = (Operator == 0) && (Op1Cs = dyn_cast(CI)) && (Op1Cs->getValue() <= 32767) && (Op1Cs->getValue() >= -32768); // SUBI takes -SIMM since it is a mnemonic for ADDI bool cond2 = (Operator == 1) && (Op1Cs = dyn_cast(CI)) && (Op1Cs->getValue() <= 32768) && (Op1Cs->getValue() >= -32767); // ANDIo, ORI, and XORI take unsigned values bool cond3 = (Operator >= 2) && (Op1Cs = dyn_cast(CI)) && (Op1Cs->getValue() >= 0) && (Op1Cs->getValue() <= 32767); // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit bool cond4 = (Operator < 2) && (Op1Cu = dyn_cast(CI)) && (Op1Cu->getValue() <= 32767); // ANDIo, ORI, and XORI take UIMMs, so they can be larger bool cond5 = (Operator >= 2) && (Op1Cu = dyn_cast(CI)) && (Op1Cu->getValue() <= 65535); if (cond1 || cond2 || cond3 || cond4 || cond5) return true; return false; } /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca /// that is to be statically allocated with the initial stack frame /// adjustment. unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) { // Already computed this? std::map::iterator I = AllocaMap.lower_bound(AI); if (I != AllocaMap.end() && I->first == AI) return I->second; const Type *Ty = AI->getAllocatedType(); ConstantUInt *CUI = cast(AI->getArraySize()); unsigned TySize = TM.getTargetData().getTypeSize(Ty); TySize *= CUI->getValue(); // Get total allocated size... unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); // Create a new stack object using the frame manager... int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); return FrameIdx; } /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void ISel::copyConstantToRegister(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Constant *C, unsigned R) { if (C->getType()->isIntegral()) { unsigned Class = getClassB(C->getType()); if (Class == cLong) { if (ConstantUInt *CUI = dyn_cast(C)) { uint64_t uval = CUI->getValue(); if (uval < (1LL << 32)) { ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, uval); copyConstantToRegister(MBB, IP, CU, R); return; } } else if (ConstantSInt *CSI = dyn_cast(C)) { int64_t val = CUI->getValue(); if (val < (1LL << 31)) { ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, val); copyConstantToRegister(MBB, IP, CU, R); return; } } else { std::cerr << "Unhandled long constant type!\n"; abort(); } // Spill long to the constant pool and load it MachineConstantPool *CP = F->getConstantPool(); unsigned CPI = CP->getConstantPoolIndex(C); BuildMI(*MBB, IP, PPC::LD, 1, R) .addReg(PPC::R2).addConstantPoolIndex(CPI); return; } assert(Class <= cInt && "Type not handled yet!"); // Handle bool if (C->getType() == Type::BoolTy) { BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True); return; } // Handle int if (ConstantUInt *CUI = dyn_cast(C)) { unsigned uval = CUI->getValue(); if (uval < 32768) { BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval); } else { unsigned Temp = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16); BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval); } return; } else if (ConstantSInt *CSI = dyn_cast(C)) { int sval = CSI->getValue(); if (sval < 32768 && sval >= -32768) { BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval); } else { unsigned Temp = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16); BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval); } return; } std::cerr << "Unhandled integer constant!\n"; abort(); } else if (ConstantFP *CFP = dyn_cast(C)) { // We need to spill the constant to memory... MachineConstantPool *CP = F->getConstantPool(); unsigned CPI = CP->getConstantPoolIndex(CFP); const Type *Ty = CFP->getType(); unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD; BuildMI(*MBB,IP,LoadOpcode,2,R).addConstantPoolIndex(CPI).addReg(PPC::R2); } else if (isa(C)) { // Copy zero (null pointer) to the register. BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0); } else if (GlobalValue *GV = dyn_cast(C)) { static unsigned OpcodeTable[] = { PPC::LBZ, PPC::LHZ, PPC::LWZ, PPC::LFS, PPC::LFD, PPC::LD }; unsigned Opcode = OpcodeTable[getClassB(GV->getType())]; BuildMI(*MBB, IP, Opcode, 2, R).addGlobalAddress(GV).addReg(PPC::R2); } else { std::cerr << "Offending constant: " << *C << "\n"; assert(0 && "Type not handled yet!"); } } /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from /// the stack into virtual registers. void ISel::LoadArgumentsToVirtualRegs(Function &Fn) { unsigned ArgOffset = ParameterSaveAreaOffset; unsigned GPR_remaining = 8; unsigned FPR_remaining = 13; unsigned GPR_idx = 0, FPR_idx = 0; static const unsigned GPR[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; MachineFrameInfo *MFI = F->getFrameInfo(); for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { bool ArgLive = !I->use_empty(); unsigned Reg = ArgLive ? getReg(*I) : 0; int FI; // Frame object index switch (getClassB(I->getType())) { case cByte: if (ArgLive) { FI = MFI->CreateFixedObject(4, ArgOffset); if (GPR_remaining > 0) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) .addReg(GPR[GPR_idx]); } else { addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI); } } break; case cShort: if (ArgLive) { FI = MFI->CreateFixedObject(4, ArgOffset); if (GPR_remaining > 0) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) .addReg(GPR[GPR_idx]); } else { addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI); } } break; case cInt: if (ArgLive) { FI = MFI->CreateFixedObject(4, ArgOffset); if (GPR_remaining > 0) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) .addReg(GPR[GPR_idx]); } else { addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI); } } break; case cLong: if (ArgLive) { FI = MFI->CreateFixedObject(8, ArgOffset); if (GPR_remaining > 1) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) .addReg(GPR[GPR_idx]); } else { addFrameReference(BuildMI(BB, PPC::LD, 2, Reg), FI); } } // longs require 4 additional bytes ArgOffset += 4; break; case cFP32: if (ArgLive) { FI = MFI->CreateFixedObject(4, ArgOffset); if (FPR_remaining > 0) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]); BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); FPR_remaining--; FPR_idx++; } else { addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI); } } break; case cFP64: if (ArgLive) { FI = MFI->CreateFixedObject(8, ArgOffset); if (FPR_remaining > 0) { BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]); BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); FPR_remaining--; FPR_idx++; } else { addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI); } } // doubles require 4 additional bytes and use 2 GPRs of param space ArgOffset += 4; if (GPR_remaining > 0) { GPR_remaining--; GPR_idx++; } break; default: assert(0 && "Unhandled argument type!"); } ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... if (GPR_remaining > 0) { GPR_remaining--; // uses up 2 GPRs GPR_idx++; } } // If the function takes variable number of arguments, add a frame offset for // the start of the first vararg value... this is used to expand // llvm.va_start. if (Fn.getFunctionType()->isVarArg()) VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); } /// SelectPHINodes - Insert machine code to generate phis. This is tricky /// because we have to generate our sources into the source basic blocks, not /// the current one. /// void ISel::SelectPHINodes() { const TargetInstrInfo &TII = *TM.getInstrInfo(); const Function &LF = *F->getFunction(); // The LLVM function... for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { const BasicBlock *BB = I; MachineBasicBlock &MBB = *MBBMap[I]; // Loop over all of the PHI nodes in the LLVM basic block... MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); for (BasicBlock::const_iterator I = BB->begin(); PHINode *PN = const_cast(dyn_cast(I)); ++I) { // Create a new machine instr PHI node, and insert it. unsigned PHIReg = getReg(*PN); MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, PPC::PHI, PN->getNumOperands(), PHIReg); // PHIValues - Map of blocks to incoming virtual registers. We use this // so that we only initialize one incoming value for a particular block, // even if the block has multiple entries in the PHI node. // std::map PHIValues; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { MachineBasicBlock *PredMBB = 0; for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (), PE = MBB.pred_end (); PI != PE; ++PI) if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) { PredMBB = *PI; break; } assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi"); unsigned ValReg; std::map::iterator EntryIt = PHIValues.lower_bound(PredMBB); if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { // We already inserted an initialization of the register for this // predecessor. Recycle it. ValReg = EntryIt->second; } else { // Get the incoming value into a virtual register. // Value *Val = PN->getIncomingValue(i); // If this is a constant or GlobalValue, we may have to insert code // into the basic block to compute it into a virtual register. if ((isa(Val) && !isa(Val)) || isa(Val)) { // Simple constants get emitted at the end of the basic block, // before any terminator instructions. We "know" that the code to // move a constant into a register will never clobber any flags. ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); } else { // Because we don't want to clobber any values which might be in // physical registers with the computation of this constant (which // might be arbitrarily complex if it is a constant expression), // just insert the computation at the top of the basic block. MachineBasicBlock::iterator PI = PredMBB->begin(); // Skip over any PHI nodes though! while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI) ++PI; ValReg = getReg(Val, PredMBB, PI); } // Remember that we inserted a value for this PHI for this predecessor PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); } PhiMI->addRegOperand(ValReg); PhiMI->addMachineBasicBlockOperand(PredMBB); } // Now that we emitted all of the incoming values for the PHI node, make // sure to reposition the InsertPoint after the PHI that we just added. // This is needed because we might have inserted a constant into this // block, right after the PHI's which is before the old insert point! PHIInsertPoint = PhiMI; ++PHIInsertPoint; } } } // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold // it into the conditional branch or select instruction which is the only user // of the cc instruction. This is the case if the conditional branch is the // only user of the setcc, and if the setcc is in the same basic block as the // conditional branch. // static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { if (SetCondInst *SCI = dyn_cast(V)) if (SCI->hasOneUse()) { Instruction *User = cast(SCI->use_back()); if ((isa(User) || isa(User)) && SCI->getParent() == User->getParent()) return SCI; } return 0; } // canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into // the load or store instruction that is the only user of the GEP. // static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) { if (GetElementPtrInst *GEPI = dyn_cast(V)) if (GEPI->hasOneUse()) { Instruction *User = cast(GEPI->use_back()); if (isa(User) && GEPI->getParent() == User->getParent() && User->getOperand(0) != GEPI && User->getOperand(1) == GEPI) { ++GEPFolds; return GEPI; } if (isa(User) && GEPI->getParent() == User->getParent() && User->getOperand(0) == GEPI) { ++GEPFolds; return GEPI; } } return 0; } // Return a fixed numbering for setcc instructions which does not depend on the // order of the opcodes. // static unsigned getSetCCNumber(unsigned Opcode) { switch (Opcode) { default: assert(0 && "Unknown setcc instruction!"); case Instruction::SetEQ: return 0; case Instruction::SetNE: return 1; case Instruction::SetLT: return 2; case Instruction::SetGE: return 3; case Instruction::SetGT: return 4; case Instruction::SetLE: return 5; } } static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) { switch (Opcode) { default: assert(0 && "Unknown setcc instruction!"); case Instruction::SetEQ: return PPC::BEQ; case Instruction::SetNE: return PPC::BNE; case Instruction::SetLT: return PPC::BLT; case Instruction::SetGE: return PPC::BGE; case Instruction::SetGT: return PPC::BGT; case Instruction::SetLE: return PPC::BLE; } } /// emitUCOM - emits an unordered FP compare. void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned LHS, unsigned RHS) { BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS); } /// EmitComparison - emits a comparison of the two operands, returning the /// extended setcc code to use. The result is in CR0. /// unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, MachineBasicBlock *MBB, MachineBasicBlock::iterator IP) { // The arguments are already supposed to be of the same type. const Type *CompTy = Op0->getType(); unsigned Class = getClassB(CompTy); unsigned Op0r = getReg(Op0, MBB, IP); // Before we do a comparison, we have to make sure that we're truncating our // registers appropriately. if (Class == cByte) { unsigned TmpReg = makeAnotherReg(CompTy); if (CompTy->isSigned()) BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r); else BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0) .addImm(24).addImm(31); Op0r = TmpReg; } else if (Class == cShort) { unsigned TmpReg = makeAnotherReg(CompTy); if (CompTy->isSigned()) BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r); else BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0) .addImm(16).addImm(31); Op0r = TmpReg; } // Use crand for lt, gt and crandc for le, ge unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC; unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW; unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI; if (Class == cLong) { Opcode = CompTy->isSigned() ? PPC::CMPD : PPC::CMPLD; OpcodeImm = CompTy->isSigned() ? PPC::CMPDI : PPC::CMPLDI; } // Special case handling of: cmp R, i if (ConstantInt *CI = dyn_cast(Op1)) { unsigned Op1v = CI->getRawValue() & 0xFFFF; // Treat compare like ADDI for the purposes of immediate suitability if (canUseAsImmediateForOpcode(CI, 0)) { BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v); } else { unsigned Op1r = getReg(Op1, MBB, IP); BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r); } return OpNum; } unsigned Op1r = getReg(Op1, MBB, IP); switch (Class) { default: assert(0 && "Unknown type class!"); case cByte: case cShort: case cInt: case cLong: BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r); break; case cFP32: case cFP64: emitUCOM(MBB, IP, Op0r, Op1r); break; } return OpNum; } /// visitSetCondInst - emit code to calculate the condition via /// EmitComparison(), and possibly store a 0 or 1 to a register as a result /// void ISel::visitSetCondInst(SetCondInst &I) { if (canFoldSetCCIntoBranchOrSelect(&I)) return; unsigned DestReg = getReg(I); unsigned OpNum = I.getOpcode(); const Type *Ty = I.getOperand (0)->getType(); EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end()); unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum); MachineBasicBlock *thisMBB = BB; const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // cmpTY cr0, r1, r2 // bCC copy1MBB // b copy0MBB // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB) // if we could insert other, non-terminator instructions after the // bCC. But MBB->getFirstTerminator() can't understand this. MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB); F->getBasicBlockList().insert(It, copy1MBB); BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB); MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); F->getBasicBlockList().insert(It, copy0MBB); BuildMI(BB, PPC::B, 1).addMBB(copy0MBB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges BB->addSuccessor(copy1MBB); BB->addSuccessor(copy0MBB); // copy1MBB: // %TrueValue = li 1 // b sinkMBB BB = copy1MBB; unsigned TrueValue = makeAnotherReg(I.getType()); BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1); BuildMI(BB, PPC::B, 1).addMBB(sinkMBB); // Update machine-CFG edges BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = li 0 // fallthrough BB = copy0MBB; unsigned FalseValue = makeAnotherReg(I.getType()); BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0); // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ] // ... BB = sinkMBB; BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue) .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB); } void ISel::visitSelectInst(SelectInst &SI) { unsigned DestReg = getReg(SI); MachineBasicBlock::iterator MII = BB->end(); emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), SI.getFalseValue(), DestReg); } /// emitSelect - Common code shared between visitSelectInst and the constant /// expression support. /// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has /// no select instruction. FSEL only works for comparisons against zero. void ISel::emitSelectOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Cond, Value *TrueVal, Value *FalseVal, unsigned DestReg) { unsigned SelectClass = getClassB(TrueVal->getType()); unsigned Opcode; // See if we can fold the setcc into the select instruction, or if we have // to get the register of the Cond value if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) { // We successfully folded the setcc into the select instruction. unsigned OpNum = getSetCCNumber(SCI->getOpcode()); OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP); Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode()); } else { unsigned CondReg = getReg(Cond, MBB, IP); BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0); Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE); } // thisMBB: // ... // cmpTY cr0, r1, r2 // bCC copy1MBB // b copy0MBB MachineBasicBlock *thisMBB = BB; const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB) // if we could insert other, non-terminator instructions after the // bCC. But MBB->getFirstTerminator() can't understand this. MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB); F->getBasicBlockList().insert(It, copy1MBB); BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB); MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); F->getBasicBlockList().insert(It, copy0MBB); BuildMI(BB, PPC::B, 1).addMBB(copy0MBB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges BB->addSuccessor(copy1MBB); BB->addSuccessor(copy0MBB); // copy1MBB: // %TrueValue = ... // b sinkMBB BB = copy1MBB; unsigned TrueValue = getReg(TrueVal, BB, BB->begin()); BuildMI(BB, PPC::B, 1).addMBB(sinkMBB); // Update machine-CFG edges BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // fallthrough BB = copy0MBB; unsigned FalseValue = getReg(FalseVal, BB, BB->begin()); // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ] // ... BB = sinkMBB; BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue) .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB); return; } /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide /// operand, in the specified target register. /// void ISel::promote32(unsigned targetReg, const ValueRecord &VR) { bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy; Value *Val = VR.Val; const Type *Ty = VR.Ty; if (Val) { if (Constant *C = dyn_cast(Val)) { Val = ConstantExpr::getCast(C, Type::IntTy); if (isa(Val)) // Could not fold Val = C; else Ty = Type::IntTy; // Folded! } // If this is a simple constant, just emit a load directly to avoid the copy if (ConstantInt *CI = dyn_cast(Val)) { int TheVal = CI->getRawValue() & 0xFFFFFFFF; if (TheVal < 32768 && TheVal >= -32768) { BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal); } else { unsigned TmpReg = makeAnotherReg(Type::IntTy); BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16); BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg) .addImm(TheVal & 0xFFFF); } return; } } // Make sure we have the register number for this value... unsigned Reg = Val ? getReg(Val) : VR.Reg; switch (getClassB(Ty)) { case cByte: // Extend value into target register (8->32) if (isUnsigned) BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) .addZImm(24).addZImm(31); else BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg); break; case cShort: // Extend value into target register (16->32) if (isUnsigned) BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) .addZImm(16).addZImm(31); else BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg); break; case cInt: case cLong: // Move value into target register (32->32) BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg); break; default: assert(0 && "Unpromotable operand class in promote32"); } } /// visitReturnInst - implemented with BLR /// void ISel::visitReturnInst(ReturnInst &I) { // Only do the processing if this is a non-void return if (I.getNumOperands() > 0) { Value *RetVal = I.getOperand(0); switch (getClassB(RetVal->getType())) { case cByte: // integral return values: extend or move into r3 and return case cShort: case cInt: case cLong: promote32(PPC::R3, ValueRecord(RetVal)); break; case cFP32: case cFP64: { // Floats & Doubles: Return in f1 unsigned RetReg = getReg(RetVal); BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg); break; } default: visitInstruction(I); } } BuildMI(BB, PPC::BLR, 1).addImm(1); } // getBlockAfter - Return the basic block which occurs lexically after the // specified one. static inline BasicBlock *getBlockAfter(BasicBlock *BB) { Function::iterator I = BB; ++I; // Get iterator to next block return I != BB->getParent()->end() ? &*I : 0; } /// visitBranchInst - Handle conditional and unconditional branches here. Note /// that since code layout is frozen at this point, that if we are trying to /// jump to a block that is the immediate successor of the current block, we can /// just make a fall-through (but we don't currently). /// void ISel::visitBranchInst(BranchInst &BI) { // Update machine-CFG edges BB->addSuccessor(MBBMap[BI.getSuccessor(0)]); if (BI.isConditional()) BB->addSuccessor(MBBMap[BI.getSuccessor(1)]); BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one if (!BI.isConditional()) { // Unconditional branch? if (BI.getSuccessor(0) != NextBB) BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); return; } // See if we can fold the setcc into the branch itself... SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition()); if (SCI == 0) { // Nope, cannot fold setcc into this branch. Emit a branch on a condition // computed some other way... unsigned condReg = getReg(BI.getCondition()); BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg) .addImm(0); if (BI.getSuccessor(1) == NextBB) { if (BI.getSuccessor(0) != NextBB) BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE) .addMBB(MBBMap[BI.getSuccessor(0)]) .addMBB(MBBMap[BI.getSuccessor(1)]); } else { BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ) .addMBB(MBBMap[BI.getSuccessor(1)]) .addMBB(MBBMap[BI.getSuccessor(0)]); if (BI.getSuccessor(0) != NextBB) BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); } return; } unsigned OpNum = getSetCCNumber(SCI->getOpcode()); unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode()); MachineBasicBlock::iterator MII = BB->end(); OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); if (BI.getSuccessor(0) != NextBB) { BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode) .addMBB(MBBMap[BI.getSuccessor(0)]) .addMBB(MBBMap[BI.getSuccessor(1)]); if (BI.getSuccessor(1) != NextBB) BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]); } else { // Change to the inverse condition... if (BI.getSuccessor(1) != NextBB) { Opcode = PPC64InstrInfo::invertPPCBranchOpcode(Opcode); BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode) .addMBB(MBBMap[BI.getSuccessor(1)]) .addMBB(MBBMap[BI.getSuccessor(0)]); } } } /// doCall - This emits an abstract call instruction, setting up the arguments /// and the return value as appropriate. For the actual function call itself, /// it inserts the specified CallMI instruction into the stream. /// void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, const std::vector &Args, bool isVarArg) { // Count how many bytes are to be pushed on the stack, including the linkage // area, and parameter passing area. unsigned NumBytes = ParameterSaveAreaOffset; unsigned ArgOffset = ParameterSaveAreaOffset; if (!Args.empty()) { for (unsigned i = 0, e = Args.size(); i != e; ++i) switch (getClassB(Args[i].Ty)) { case cByte: case cShort: case cInt: NumBytes += 4; break; case cLong: NumBytes += 8; break; case cFP32: NumBytes += 4; break; case cFP64: NumBytes += 8; break; break; default: assert(0 && "Unknown class!"); } // Just to be safe, we'll always reserve the full argument passing space in // case any called code gets funky on us. if (NumBytes < ParameterSaveAreaOffset + MaxArgumentStackSpace) NumBytes = ParameterSaveAreaOffset + MaxArgumentStackSpace; // Adjust the stack pointer for the new arguments... // These functions are automatically eliminated by the prolog/epilog pass BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes); // Arguments go on the stack in reverse order, as specified by the ABI. int GPR_remaining = 8, FPR_remaining = 13; unsigned GPR_idx = 0, FPR_idx = 0; static const unsigned GPR[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; for (unsigned i = 0, e = Args.size(); i != e; ++i) { unsigned ArgReg; switch (getClassB(Args[i].Ty)) { case cByte: case cShort: // Promote arg to 32 bits wide into a temporary register... ArgReg = makeAnotherReg(Type::UIntTy); promote32(ArgReg, Args[i]); // Reg or stack? if (GPR_remaining > 0) { BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) .addReg(ArgReg); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); } if (GPR_remaining <= 0 || isVarArg) { BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); } break; case cInt: ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; // Reg or stack? if (GPR_remaining > 0) { BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) .addReg(ArgReg); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); } if (GPR_remaining <= 0 || isVarArg) { BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); } break; case cLong: ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; // Reg or stack? if (GPR_remaining > 0) { BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg) .addReg(ArgReg); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); } if (GPR_remaining <= 0 || isVarArg) { BuildMI(BB, PPC::STD, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); } ArgOffset += 4; // 8 byte entry, not 4. break; case cFP32: ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; // Reg or stack? if (FPR_remaining > 0) { BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg); CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); FPR_remaining--; FPR_idx++; // If this is a vararg function, and there are GPRs left, also // pass the float in an int. Otherwise, put it on the stack. if (isVarArg) { BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); if (GPR_remaining > 0) { BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]) .addSImm(ArgOffset).addReg(ArgReg); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); } } } else { BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); } break; case cFP64: ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; // Reg or stack? if (FPR_remaining > 0) { BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg); CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); FPR_remaining--; FPR_idx++; // For vararg functions, must pass doubles via int regs as well if (isVarArg) { BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); if (GPR_remaining > 0) { BuildMI(BB, PPC::LD, 2, GPR[GPR_idx]).addSImm(ArgOffset) .addReg(PPC::R1); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); } } } else { BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset) .addReg(PPC::R1); } // Doubles use 8 bytes ArgOffset += 4; break; default: assert(0 && "Unknown class!"); } ArgOffset += 4; GPR_remaining--; GPR_idx++; } } else { BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(0); } BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR); BB->push_back(CallMI); BuildMI(BB, PPC::NOP, 0); // These functions are automatically eliminated by the prolog/epilog pass BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes); // If there is a return value, scavenge the result from the location the call // leaves it in... // if (Ret.Ty != Type::VoidTy) { unsigned DestClass = getClassB(Ret.Ty); switch (DestClass) { case cByte: case cShort: case cInt: case cLong: // Integral results are in r3 BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3); break; case cFP32: // Floating-point return values live in f1 case cFP64: BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1); break; default: assert(0 && "Unknown class!"); } } } /// visitCallInst - Push args on stack and do a procedure call instruction. void ISel::visitCallInst(CallInst &CI) { MachineInstr *TheCall; Function *F = CI.getCalledFunction(); if (F) { // Is it an intrinsic function call? if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here return; } // Emit a CALL instruction with PC-relative displacement. TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true); } else { // Emit an indirect call through the CTR unsigned Reg = getReg(CI.getCalledValue()); BuildMI(BB, PPC::MTCTR, 1).addReg(Reg); TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0); } std::vector Args; for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) Args.push_back(ValueRecord(CI.getOperand(i))); unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; bool isVarArg = F ? F->getFunctionType()->isVarArg() : true; doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg); } /// dyncastIsNan - Return the operand of an isnan operation if this is an isnan. /// static Value *dyncastIsNan(Value *V) { if (CallInst *CI = dyn_cast(V)) if (Function *F = CI->getCalledFunction()) if (F->getIntrinsicID() == Intrinsic::isunordered) return CI->getOperand(1); return 0; } /// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by /// or's whos operands are all calls to the isnan predicate. static bool isOnlyUsedByUnorderedComparisons(Value *V) { assert(dyncastIsNan(V) && "The value isn't an isnan call!"); // Check all uses, which will be or's of isnans if this predicate is true. for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ Instruction *I = cast(*UI); if (I->getOpcode() != Instruction::Or) return false; if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false; if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false; } return true; } /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the /// function, lowering any calls to unknown intrinsic functions into the /// equivalent LLVM code. /// void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) if (CallInst *CI = dyn_cast(I++)) if (Function *F = CI->getCalledFunction()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend: case Intrinsic::returnaddress: case Intrinsic::frameaddress: // FIXME: should lower these ourselves // case Intrinsic::isunordered: // case Intrinsic::memcpy: -> doCall(). system memcpy almost // guaranteed to be faster than anything we generate ourselves // We directly implement these intrinsics break; case Intrinsic::readio: { // On PPC, memory operations are in-order. Lower this intrinsic // into a volatile load. Instruction *Before = CI->getPrev(); LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI); CI->replaceAllUsesWith(LI); BB->getInstList().erase(CI); break; } case Intrinsic::writeio: { // On PPC, memory operations are in-order. Lower this intrinsic // into a volatile store. Instruction *Before = CI->getPrev(); StoreInst *SI = new StoreInst(CI->getOperand(1), CI->getOperand(2), true, CI); CI->replaceAllUsesWith(SI); BB->getInstList().erase(CI); break; } default: // All other intrinsic calls we must lower. Instruction *Before = CI->getPrev(); TM.getIntrinsicLowering().LowerIntrinsicCall(CI); if (Before) { // Move iterator to instruction after call I = Before; ++I; } else { I = BB->begin(); } } } void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { unsigned TmpReg1, TmpReg2, TmpReg3; switch (ID) { case Intrinsic::vastart: // Get the address of the first vararg value... TmpReg1 = getReg(CI); addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex, 0, false); return; case Intrinsic::vacopy: TmpReg1 = getReg(CI); TmpReg2 = getReg(CI.getOperand(1)); BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2); return; case Intrinsic::vaend: return; case Intrinsic::returnaddress: TmpReg1 = getReg(CI); if (cast(CI.getOperand(1))->isNullValue()) { MachineFrameInfo *MFI = F->getFrameInfo(); unsigned NumBytes = MFI->getStackSize(); BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8) .addReg(PPC::R1); } else { // Values other than zero are not implemented yet. BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0); } return; case Intrinsic::frameaddress: TmpReg1 = getReg(CI); if (cast(CI.getOperand(1))->isNullValue()) { BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1); } else { // Values other than zero are not implemented yet. BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0); } return; #if 0 // This may be useful for supporting isunordered case Intrinsic::isnan: // If this is only used by 'isunordered' style comparisons, don't emit it. if (isOnlyUsedByUnorderedComparisons(&CI)) return; TmpReg1 = getReg(CI.getOperand(1)); emitUCOM(BB, BB->end(), TmpReg1, TmpReg1); TmpReg2 = makeAnotherReg(Type::IntTy); BuildMI(BB, PPC::MFCR, TmpReg2); TmpReg3 = getReg(CI); BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31); return; #endif default: assert(0 && "Error: unknown intrinsics should have been lowered!"); } } /// visitSimpleBinary - Implement simple binary operators for integral types... /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for /// Xor. /// void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { unsigned DestReg = getReg(B); MachineBasicBlock::iterator MI = BB->end(); Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); unsigned Class = getClassB(B.getType()); emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg); } /// emitBinaryFPOperation - This method handles emission of floating point /// Add (0), Sub (1), Mul (2), and Div (3) operations. void ISel::emitBinaryFPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned DestReg) { static const unsigned OpcodeTab[][4] = { { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double }; // Special case: R1 = op , R2 if (ConstantFP *Op0C = dyn_cast(Op0)) if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) { // -0.0 - X === -X unsigned op1Reg = getReg(Op1, BB, IP); BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg); return; } unsigned Opcode = OpcodeTab[Op0->getType() == Type::DoubleTy][OperatorClass]; unsigned Op0r = getReg(Op0, BB, IP); unsigned Op1r = getReg(Op1, BB, IP); BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); } /// emitSimpleBinaryOperation - Implement simple binary operators for integral /// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for /// Or, 4 for Xor. /// /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary /// and constant expression support. /// void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned DestReg) { unsigned Class = getClassB(Op0->getType()); // Arithmetic and Bitwise operators static const unsigned OpcodeTab[] = { PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR }; static const unsigned ImmOpcodeTab[] = { PPC::ADDI, PPC::SUBI, PPC::ANDIo, PPC::ORI, PPC::XORI }; static const unsigned RImmOpcodeTab[] = { PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI }; if (Class == cFP32 || Class == cFP64) { assert(OperatorClass < 2 && "No logical ops for FP!"); emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg); return; } if (Op0->getType() == Type::BoolTy) { if (OperatorClass == 3) // If this is an or of two isnan's, emit an FP comparison directly instead // of or'ing two isnan's together. if (Value *LHS = dyncastIsNan(Op0)) if (Value *RHS = dyncastIsNan(Op1)) { unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP); unsigned TmpReg = makeAnotherReg(Type::IntTy); emitUCOM(MBB, IP, Op0Reg, Op1Reg); BuildMI(*MBB, IP, PPC::MFCR, TmpReg); BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4) .addImm(31).addImm(31); return; } } // Special case: op , Reg if (ConstantInt *CI = dyn_cast(Op0)) { // sub 0, X -> subfic if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) { unsigned Op1r = getReg(Op1, MBB, IP); int imm = CI->getRawValue() & 0xFFFF; BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm); return; } // If it is easy to do, swap the operands and emit an immediate op if (Class != cLong && OperatorClass != 1 && canUseAsImmediateForOpcode(CI, OperatorClass)) { unsigned Op1r = getReg(Op1, MBB, IP); int imm = CI->getRawValue() & 0xFFFF; if (OperatorClass < 2) BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r) .addSImm(imm); else BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r) .addZImm(imm); return; } } // Special case: op Reg, if (ConstantInt *Op1C = dyn_cast(Op1)) { unsigned Op0r = getReg(Op0, MBB, IP); // xor X, -1 -> not X if (OperatorClass == 4 && Op1C->isAllOnesValue()) { BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r); return; } if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) { int immediate = Op1C->getRawValue() & 0xFFFF; if (OperatorClass < 2) BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r) .addSImm(immediate); else BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r) .addZImm(immediate); } else { unsigned Op1r = getReg(Op1, MBB, IP); BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r) .addReg(Op1r); } return; } // We couldn't generate an immediate variant of the op, load both halves into // registers and emit the appropriate opcode. unsigned Op0r = getReg(Op0, MBB, IP); unsigned Op1r = getReg(Op1, MBB, IP); unsigned Opcode = OpcodeTab[OperatorClass]; BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); } // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It // returns zero when the input is not exactly a power of two. static unsigned ExactLog2(unsigned Val) { if (Val == 0 || (Val & (Val-1))) return 0; unsigned Count = 0; while (Val != 1) { Val >>= 1; ++Count; } return Count; } /// doMultiply - Emit appropriate instructions to multiply together the /// Values Op0 and Op1, and put the result in DestReg. /// void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned DestReg, Value *Op0, Value *Op1) { unsigned Class0 = getClass(Op0->getType()); unsigned Class1 = getClass(Op1->getType()); unsigned Op0r = getReg(Op0, MBB, IP); unsigned Op1r = getReg(Op1, MBB, IP); // 64 x 64 -> 64 if (Class0 == cLong && Class1 == cLong) { BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r); return; } // 64 x 32 or less, promote 32 to 64 and do a 64 x 64 if (Class0 == cLong && Class1 <= cInt) { // FIXME: CLEAR or SIGN EXTEND Op1 BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r); return; } // 32 x 32 -> 32 if (Class0 <= cInt && Class1 <= cInt) { BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r); return; } assert(0 && "doMultiply cannot operate on unknown type!"); } /// doMultiplyConst - This method will multiply the value in Op0 by the /// value of the ContantInt *CI void ISel::doMultiplyConst(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned DestReg, Value *Op0, ConstantInt *CI) { unsigned Class = getClass(Op0->getType()); // Mul op0, 0 ==> 0 if (CI->isNullValue()) { BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0); return; } // Mul op0, 1 ==> op0 if (CI->equalsInt(1)) { unsigned Op0r = getReg(Op0, MBB, IP); BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r); return; } // If the element size is exactly a power of 2, use a shift to get it. if (unsigned Shift = ExactLog2(CI->getRawValue())) { ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift); emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg); return; } // If 32 bits or less and immediate is in right range, emit mul by immediate if (Class == cByte || Class == cShort || Class == cInt) { if (canUseAsImmediateForOpcode(CI, 0)) { unsigned Op0r = getReg(Op0, MBB, IP); unsigned imm = CI->getRawValue() & 0xFFFF; BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm); return; } } doMultiply(MBB, IP, DestReg, Op0, CI); } void ISel::visitMul(BinaryOperator &I) { unsigned ResultReg = getReg(I); Value *Op0 = I.getOperand(0); Value *Op1 = I.getOperand(1); MachineBasicBlock::iterator IP = BB->end(); emitMultiply(BB, IP, Op0, Op1, ResultReg); } void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned DestReg) { TypeClass Class = getClass(Op0->getType()); switch (Class) { case cByte: case cShort: case cInt: case cLong: if (ConstantInt *CI = dyn_cast(Op1)) { doMultiplyConst(MBB, IP, DestReg, Op0, CI); } else { doMultiply(MBB, IP, DestReg, Op0, Op1); } return; case cFP32: case cFP64: emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg); return; break; } } /// visitDivRem - Handle division and remainder instructions... these /// instruction both require the same instructions to be generated, they just /// select the result from a different register. Note that both of these /// instructions work differently for signed and unsigned operands. /// void ISel::visitDivRem(BinaryOperator &I) { unsigned ResultReg = getReg(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); MachineBasicBlock::iterator IP = BB->end(); emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div, ResultReg); } void ISel::emitDivRemOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, bool isDiv, unsigned ResultReg) { const Type *Ty = Op0->getType(); unsigned Class = getClass(Ty); switch (Class) { case cFP32: if (isDiv) { // Floating point divide... emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg); return; } else { // Floating point remainder via fmodf(float x, float y); unsigned Op0Reg = getReg(Op0, BB, IP); unsigned Op1Reg = getReg(Op1, BB, IP); MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true); std::vector Args; Args.push_back(ValueRecord(Op0Reg, Type::FloatTy)); Args.push_back(ValueRecord(Op1Reg, Type::FloatTy)); doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false); } return; case cFP64: if (isDiv) { // Floating point divide... emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg); return; } else { // Floating point remainder via fmod(double x, double y); unsigned Op0Reg = getReg(Op0, BB, IP); unsigned Op1Reg = getReg(Op1, BB, IP); MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true); std::vector Args; Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false); } return; case cLong: { static Function* const Funcs[] = { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn }; unsigned Op0Reg = getReg(Op0, BB, IP); unsigned Op1Reg = getReg(Op1, BB, IP); unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true); std::vector Args; Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false); return; } case cByte: case cShort: case cInt: break; // Small integrals, handled below... default: assert(0 && "Unknown class!"); } // Special case signed division by power of 2. if (isDiv) if (ConstantSInt *CI = dyn_cast(Op1)) { assert(Class != cLong && "This doesn't handle 64-bit divides!"); int V = CI->getValue(); if (V == 1) { // X /s 1 => X unsigned Op0Reg = getReg(Op0, BB, IP); BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg); return; } if (V == -1) { // X /s -1 => -X unsigned Op0Reg = getReg(Op0, BB, IP); BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg); return; } unsigned log2V = ExactLog2(V); if (log2V != 0 && Ty->isSigned()) { unsigned Op0Reg = getReg(Op0, BB, IP); unsigned TmpReg = makeAnotherReg(Op0->getType()); BuildMI(*BB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V); BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg); return; } } unsigned Op0Reg = getReg(Op0, BB, IP); unsigned Op1Reg = getReg(Op1, BB, IP); unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU; if (isDiv) { BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); } else { // Remainder unsigned TmpReg1 = makeAnotherReg(Op0->getType()); unsigned TmpReg2 = makeAnotherReg(Op0->getType()); BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg); BuildMI(*BB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg); BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg); } } /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here /// for constant immediate shift values, and for constant immediate /// shift values equal to 1. Even the general case is sort of special, /// because the shift amount has to be in CL, not just any old register. /// void ISel::visitShiftInst(ShiftInst &I) { MachineBasicBlock::iterator IP = BB->end(); emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1), I.getOpcode() == Instruction::Shl, I.getType(), getReg(I)); } /// emitShiftOperation - Common code shared between visitShiftInst and /// constant expression support. /// void ISel::emitShiftOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op, Value *ShiftAmount, bool isLeftShift, const Type *ResultTy, unsigned DestReg) { unsigned SrcReg = getReg (Op, MBB, IP); bool isSigned = ResultTy->isSigned (); unsigned Class = getClass (ResultTy); // Longs, as usual, are handled specially... if (Class == cLong) { // If we have a constant shift, we can generate much more efficient code // than otherwise... // if (ConstantUInt *CUI = dyn_cast(ShiftAmount)) { unsigned Amount = CUI->getValue(); assert(Amount < 64 && "Invalid immediate shift amount!"); if (isLeftShift) { BuildMI(*MBB, IP, PPC::RLDICR, 3, DestReg).addReg(SrcReg).addImm(Amount) .addImm(63-Amount); } else { if (isSigned) { BuildMI(*MBB, IP, PPC::SRADI, 2, DestReg).addReg(SrcReg) .addImm(Amount); } else { BuildMI(*MBB, IP, PPC::RLDICL, 3, DestReg).addReg(SrcReg) .addImm(64-Amount).addImm(Amount); } } } else { unsigned ShiftReg = getReg (ShiftAmount, MBB, IP); if (isLeftShift) { BuildMI(*MBB, IP, PPC::SLD, 2, DestReg).addReg(SrcReg).addReg(ShiftReg); } else { unsigned Opcode = (isSigned) ? PPC::SRAD : PPC::SRD; BuildMI(*MBB, IP, Opcode, DestReg).addReg(SrcReg).addReg(ShiftReg); } } return; } if (ConstantUInt *CUI = dyn_cast(ShiftAmount)) { // The shift amount is constant, guaranteed to be a ubyte. Get its value. assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); unsigned Amount = CUI->getValue(); if (isLeftShift) { BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(Amount).addImm(0).addImm(31-Amount); } else { if (isSigned) { BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount); } else { BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(32-Amount).addImm(Amount).addImm(31); } } } else { // The shift amount is non-constant. unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP); if (isLeftShift) { BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg) .addReg(ShiftAmountReg); } else { BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg) .addReg(SrcReg).addReg(ShiftAmountReg); } } } /// visitLoadInst - Implement LLVM load instructions. Pretty straightforward /// mapping of LLVM classes to PPC load instructions, with the exception of /// signed byte loads, which need a sign extension following them. /// void ISel::visitLoadInst(LoadInst &I) { // Immediate opcodes, for reg+imm addressing static const unsigned ImmOpcodes[] = { PPC::LBZ, PPC::LHZ, PPC::LWZ, PPC::LFS, PPC::LFD, PPC::LWZ }; // Indexed opcodes, for reg+reg addressing static const unsigned IdxOpcodes[] = { PPC::LBZX, PPC::LHZX, PPC::LWZX, PPC::LFSX, PPC::LFDX, PPC::LWZX }; unsigned Class = getClassB(I.getType()); unsigned ImmOpcode = ImmOpcodes[Class]; unsigned IdxOpcode = IdxOpcodes[Class]; unsigned DestReg = getReg(I); Value *SourceAddr = I.getOperand(0); if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA; if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX; if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) { unsigned FI = getFixedSizedAllocaFI(AI); if (Class == cByte && I.getType()->isSigned()) { unsigned TmpReg = makeAnotherReg(I.getType()); addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI); BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); } else { addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI); } return; } // If this load is the only use of the GEP instruction that is its address, // then we can fold the GEP directly into the load instruction. // emitGEPOperation with a second to last arg of 'true' will place the // base register for the GEP into baseReg, and the constant offset from that // into offset. If the offset fits in 16 bits, we can emit a reg+imm store // otherwise, we copy the offset into another reg, and use reg+reg addressing. if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) { unsigned baseReg = getReg(GEPI); unsigned pendingAdd; ConstantSInt *offset; emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, GEPI->op_end(), baseReg, true, &offset, &pendingAdd); if (pendingAdd == 0 && Class != cLong && canUseAsImmediateForOpcode(offset, 0)) { if (Class == cByte && I.getType()->isSigned()) { unsigned TmpReg = makeAnotherReg(I.getType()); BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue()) .addReg(baseReg); BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); } else { BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue()) .addReg(baseReg); } return; } unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset); if (Class == cByte && I.getType()->isSigned()) { unsigned TmpReg = makeAnotherReg(I.getType()); BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg); BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); } else { BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg); } return; } // The fallback case, where the load was from a source that could not be // folded into the load instruction. unsigned SrcAddrReg = getReg(SourceAddr); if (Class == cByte && I.getType()->isSigned()) { unsigned TmpReg = makeAnotherReg(I.getType()); BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg); BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg); } else { BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg); } } /// visitStoreInst - Implement LLVM store instructions /// void ISel::visitStoreInst(StoreInst &I) { // Immediate opcodes, for reg+imm addressing static const unsigned ImmOpcodes[] = { PPC::STB, PPC::STH, PPC::STW, PPC::STFS, PPC::STFD, PPC::STW }; // Indexed opcodes, for reg+reg addressing static const unsigned IdxOpcodes[] = { PPC::STBX, PPC::STHX, PPC::STWX, PPC::STFSX, PPC::STFDX, PPC::STWX }; Value *SourceAddr = I.getOperand(1); const Type *ValTy = I.getOperand(0)->getType(); unsigned Class = getClassB(ValTy); unsigned ImmOpcode = ImmOpcodes[Class]; unsigned IdxOpcode = IdxOpcodes[Class]; unsigned ValReg = getReg(I.getOperand(0)); // If this store is the only use of the GEP instruction that is its address, // then we can fold the GEP directly into the store instruction. // emitGEPOperation with a second to last arg of 'true' will place the // base register for the GEP into baseReg, and the constant offset from that // into offset. If the offset fits in 16 bits, we can emit a reg+imm store // otherwise, we copy the offset into another reg, and use reg+reg addressing. if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) { unsigned baseReg = getReg(GEPI); unsigned pendingAdd; ConstantSInt *offset; emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, GEPI->op_end(), baseReg, true, &offset, &pendingAdd); if (0 == pendingAdd && Class != cLong && canUseAsImmediateForOpcode(offset, 0)) { BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue()) .addReg(baseReg); return; } unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset); BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg); return; } // If the store address wasn't the only use of a GEP, we fall back to the // standard path: store the ValReg at the value in AddressReg. unsigned AddressReg = getReg(I.getOperand(1)); BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg); } /// visitCastInst - Here we have various kinds of copying with or without sign /// extension going on. /// void ISel::visitCastInst(CastInst &CI) { Value *Op = CI.getOperand(0); unsigned SrcClass = getClassB(Op->getType()); unsigned DestClass = getClassB(CI.getType()); // If this is a cast from a 32-bit integer to a Long type, and the only uses // of the case are GEP instructions, then the cast does not need to be // generated explicitly, it will be folded into the GEP. if (DestClass == cLong && SrcClass == cInt) { bool AllUsesAreGEPs = true; for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) if (!isa(*I)) { AllUsesAreGEPs = false; break; } // No need to codegen this cast if all users are getelementptr instrs... if (AllUsesAreGEPs) return; } unsigned DestReg = getReg(CI); MachineBasicBlock::iterator MI = BB->end(); emitCastOperation(BB, MI, Op, CI.getType(), DestReg); } /// emitCastOperation - Common code shared between visitCastInst and constant /// expression cast support. /// void ISel::emitCastOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Src, const Type *DestTy, unsigned DestReg) { const Type *SrcTy = Src->getType(); unsigned SrcClass = getClassB(SrcTy); unsigned DestClass = getClassB(DestTy); unsigned SrcReg = getReg(Src, MBB, IP); // Implement casts to bool by using compare on the operand followed by set if // not zero on the result. if (DestTy == Type::BoolTy) { switch (SrcClass) { case cByte: case cShort: case cInt: case cLong: { unsigned TmpReg = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1); BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg); break; } case cFP32: case cFP64: // FSEL perhaps? std::cerr << "ERROR: Cast fp-to-bool not implemented!\n"; abort(); } return; } // Handle cast of Float -> Double if (SrcClass == cFP32 && DestClass == cFP64) { BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg); return; } // Handle cast of Double -> Float if (SrcClass == cFP64 && DestClass == cFP32) { BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg); return; } // Handle casts from integer to floating point now... if (DestClass == cFP32 || DestClass == cFP64) { // Emit a library call for long to float conversion if (SrcClass == cLong) { std::vector Args; Args.push_back(ValueRecord(SrcReg, SrcTy)); Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn; MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false); return; } // Make sure we're dealing with a full 32 bits unsigned TmpReg = makeAnotherReg(Type::IntTy); promote32(TmpReg, ValueRecord(SrcReg, SrcTy)); SrcReg = TmpReg; // Spill the integer to memory and reload it from there. // Also spill room for a special conversion constant int ConstantFrameIndex = F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); int ValueFrameIdx = F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); unsigned constantHi = makeAnotherReg(Type::IntTy); unsigned constantLo = makeAnotherReg(Type::IntTy); unsigned ConstF = makeAnotherReg(Type::DoubleTy); unsigned TempF = makeAnotherReg(Type::DoubleTy); if (!SrcTy->isSigned()) { BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330); BuildMI(*BB, IP, PPC::LI, 1, constantLo).addSImm(0); addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), ConstantFrameIndex); addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo), ConstantFrameIndex, 4); addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), ValueFrameIdx); addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(SrcReg), ValueFrameIdx, 4); addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF), ConstantFrameIndex); addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx); BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF); } else { unsigned TempLo = makeAnotherReg(Type::IntTy); BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330); BuildMI(*BB, IP, PPC::LIS, 1, constantLo).addSImm(0x8000); addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), ConstantFrameIndex); addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo), ConstantFrameIndex, 4); addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi), ValueFrameIdx); BuildMI(*BB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000); addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(TempLo), ValueFrameIdx, 4); addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF), ConstantFrameIndex); addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx); BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF); } return; } // Handle casts from floating point to integer now... if (SrcClass == cFP32 || SrcClass == cFP64) { static Function* const Funcs[] = { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn }; // emit library call if (DestClass == cLong) { bool isDouble = SrcClass == cFP64; unsigned nameIndex = 2 * DestTy->isSigned() + isDouble; std::vector Args; Args.push_back(ValueRecord(SrcReg, SrcTy)); Function *floatFn = Funcs[nameIndex]; MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true); doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false); return; } int ValueFrameIdx = F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); if (DestTy->isSigned()) { unsigned TempReg = makeAnotherReg(Type::DoubleTy); // Convert to integer in the FP reg and store it to a stack slot BuildMI(*BB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg); addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3) .addReg(TempReg), ValueFrameIdx); // There is no load signed byte opcode, so we must emit a sign extend for // that particular size. Make sure to source the new integer from the // correct offset. if (DestClass == cByte) { unsigned TempReg2 = makeAnotherReg(DestTy); addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, TempReg2), ValueFrameIdx, 7); BuildMI(*MBB, IP, PPC::EXTSB, DestReg).addReg(TempReg2); } else { int offset = (DestClass == cShort) ? 6 : 4; unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ; addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg), ValueFrameIdx, offset); } } else { unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f)); double maxInt = (1LL << 32) - 1; unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt)); double border = 1LL << 31; unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border)); unsigned UseZero = makeAnotherReg(Type::DoubleTy); unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy); unsigned UseChoice = makeAnotherReg(Type::DoubleTy); unsigned TmpReg = makeAnotherReg(Type::DoubleTy); unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy); unsigned ConvReg = makeAnotherReg(Type::DoubleTy); unsigned IntTmp = makeAnotherReg(Type::IntTy); unsigned XorReg = makeAnotherReg(Type::IntTy); int FrameIdx = F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); // Update machine-CFG edges MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *OldMBB = BB; ilist::iterator It = BB; ++It; F->getBasicBlockList().insert(It, XorMBB); F->getBasicBlockList().insert(It, PhiMBB); BB->addSuccessor(XorMBB); BB->addSuccessor(PhiMBB); // Convert from floating point to unsigned 32-bit value // Use 0 if incoming value is < 0.0 BuildMI(*BB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg) .addReg(Zero); // Use 2**32 - 1 if incoming value is >= 2**32 BuildMI(*BB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg); BuildMI(*BB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt) .addReg(UseZero).addReg(MaxInt); // Subtract 2**31 BuildMI(*BB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border); // Use difference if >= 2**31 BuildMI(*BB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice) .addReg(Border); BuildMI(*BB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg) .addReg(UseChoice); // Convert to integer BuildMI(*BB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2); addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3).addReg(ConvReg), FrameIdx); if (DestClass == cByte) { addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, DestReg), FrameIdx, 7); } else if (DestClass == cShort) { addFrameReference(BuildMI(*BB, IP, PPC::LHZ, 2, DestReg), FrameIdx, 6); } if (DestClass == cInt) { addFrameReference(BuildMI(*BB, IP, PPC::LWZ, 2, IntTmp), FrameIdx, 4); BuildMI(*BB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB); BuildMI(*BB, IP, PPC::B, 1).addMBB(XorMBB); // XorMBB: // add 2**31 if input was >= 2**31 BB = XorMBB; BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000); XorMBB->addSuccessor(PhiMBB); // PhiMBB: // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ] BB = PhiMBB; BuildMI(BB, PPC::PHI, 4, DestReg).addReg(IntTmp).addMBB(OldMBB) .addReg(XorReg).addMBB(XorMBB); } } return; } // Check our invariants assert((SrcClass <= cInt || SrcClass == cLong) && "Unhandled source class for cast operation!"); assert((DestClass <= cInt || DestClass == cLong) && "Unhandled destination class for cast operation!"); bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; bool destUnsigned = DestTy->isUnsigned(); // Unsigned -> Unsigned, clear if larger if (sourceUnsigned && destUnsigned) { // handle long dest class now to keep switch clean if (DestClass == cLong) { BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); return; } // handle u{ byte, short, int } x u{ byte, short, int } unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16; switch (SrcClass) { case cByte: case cShort: if (SrcClass == DestClass) BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(0).addImm(clearBits).addImm(31); break; case cInt: case cLong: if (DestClass == cInt) BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(0).addImm(clearBits).addImm(31); break; } return; } // Signed -> Signed if (!sourceUnsigned && !destUnsigned) { // handle long dest class now to keep switch clean if (DestClass == cLong) { BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); return; } // handle { byte, short, int } x { byte, short, int } switch (SrcClass) { case cByte: if (DestClass == cByte) BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); break; case cShort: if (DestClass == cByte) BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); else if (DestClass == cShort) BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); break; case cInt: case cLong: if (DestClass == cByte) BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); else if (DestClass == cShort) BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); break; } return; } // Unsigned -> Signed if (sourceUnsigned && !destUnsigned) { // handle long dest class now to keep switch clean if (DestClass == cLong) { BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); return; } // handle u{ byte, short, int } -> { byte, short, int } switch (SrcClass) { case cByte: if (DestClass == cByte) // uByte 255 -> signed byte == -1 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); else // uByte 255 -> signed short/int == 255 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0) .addImm(24).addImm(31); break; case cShort: if (DestClass == cByte) BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); else if (DestClass == cShort) BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0) .addImm(16).addImm(31); break; case cInt: case cLong: if (DestClass == cByte) BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg); else if (DestClass == cShort) BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); break; } return; } // Signed -> Unsigned if (!sourceUnsigned && destUnsigned) { // handle long dest class now to keep switch clean if (DestClass == cLong) { BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); return; } // handle { byte, short, int } -> u{ byte, short, int } unsigned clearBits = (DestClass == cByte) ? 24 : 16; switch (SrcClass) { case cByte: case cShort: if (DestClass == cByte || DestClass == cShort) // sbyte -1 -> ubyte 0x000000FF BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(0).addImm(clearBits).addImm(31); else // sbyte -1 -> ubyte 0xFFFFFFFF BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); break; case cInt: case cLong: if (DestClass == cInt) BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); else BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg) .addImm(0).addImm(clearBits).addImm(31); break; } return; } // Anything we haven't handled already, we can't (yet) handle at all. std::cerr << "Unhandled cast from " << SrcTy->getDescription() << "to " << DestTy->getDescription() << '\n'; abort(); } /// visitVANextInst - Implement the va_next instruction... /// void ISel::visitVANextInst(VANextInst &I) { unsigned VAList = getReg(I.getOperand(0)); unsigned DestReg = getReg(I); unsigned Size; switch (I.getArgType()->getTypeID()) { default: std::cerr << I; assert(0 && "Error: bad type for va_next instruction!"); return; case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: Size = 4; break; case Type::ULongTyID: case Type::LongTyID: case Type::DoubleTyID: Size = 8; break; } // Increment the VAList pointer... BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size); } void ISel::visitVAArgInst(VAArgInst &I) { unsigned VAList = getReg(I.getOperand(0)); unsigned DestReg = getReg(I); switch (I.getType()->getTypeID()) { default: std::cerr << I; assert(0 && "Error: bad type for va_next instruction!"); return; case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList); break; case Type::ULongTyID: case Type::LongTyID: BuildMI(BB, PPC::LD, 2, DestReg).addSImm(0).addReg(VAList); break; case Type::FloatTyID: BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList); break; case Type::DoubleTyID: BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList); break; } } /// visitGetElementPtrInst - instruction-select GEP instructions /// void ISel::visitGetElementPtrInst(GetElementPtrInst &I) { if (canFoldGEPIntoLoadOrStore(&I)) return; unsigned outputReg = getReg(I); emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(), outputReg, false, 0, 0); } /// emitGEPOperation - Common code shared between visitGetElementPtrInst and /// constant expression GEP support. /// void ISel::emitGEPOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Src, User::op_iterator IdxBegin, User::op_iterator IdxEnd, unsigned TargetReg, bool GEPIsFolded, ConstantSInt **RemainderPtr, unsigned *PendingAddReg) { const TargetData &TD = TM.getTargetData(); const Type *Ty = Src->getType(); unsigned basePtrReg = getReg(Src, MBB, IP); int64_t constValue = 0; // Record the operations to emit the GEP in a vector so that we can emit them // after having analyzed the entire instruction. std::vector ops; // GEPs have zero or more indices; we must perform a struct access // or array access for each one. for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe; ++oi) { Value *idx = *oi; if (const StructType *StTy = dyn_cast(Ty)) { // It's a struct access. idx is the index into the structure, // which names the field. Use the TargetData structure to // pick out what the layout of the structure is in memory. // Use the (constant) structure index's value to find the // right byte offset from the StructLayout class's list of // structure member offsets. unsigned fieldIndex = cast(idx)->getValue(); unsigned memberOffset = TD.getStructLayout(StTy)->MemberOffsets[fieldIndex]; // StructType member offsets are always constant values. Add it to the // running total. constValue += memberOffset; // The next type is the member of the structure selected by the // index. Ty = StTy->getElementType (fieldIndex); } else if (const SequentialType *SqTy = dyn_cast (Ty)) { // Many GEP instructions use a [cast (int/uint) to LongTy] as their // operand. Handle this case directly now... if (CastInst *CI = dyn_cast(idx)) if (CI->getOperand(0)->getType() == Type::IntTy || CI->getOperand(0)->getType() == Type::UIntTy) idx = CI->getOperand(0); // It's an array or pointer access: [ArraySize x ElementType]. // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we // must find the size of the pointed-to type (Not coincidentally, the next // type is the type of the elements in the array). Ty = SqTy->getElementType(); unsigned elementSize = TD.getTypeSize(Ty); if (ConstantInt *C = dyn_cast(idx)) { if (ConstantSInt *CS = dyn_cast(C)) constValue += CS->getValue() * elementSize; else if (ConstantUInt *CU = dyn_cast(C)) constValue += CU->getValue() * elementSize; else assert(0 && "Invalid ConstantInt GEP index type!"); } else { // Push current gep state to this point as an add ops.push_back(CollapsedGepOp(false, 0, ConstantSInt::get(Type::IntTy,constValue))); // Push multiply gep op and reset constant value ops.push_back(CollapsedGepOp(true, idx, ConstantSInt::get(Type::IntTy, elementSize))); constValue = 0; } } } // Emit instructions for all the collapsed ops bool pendingAdd = false; unsigned pendingAddReg = 0; for(std::vector::iterator cgo_i = ops.begin(), cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) { CollapsedGepOp& cgo = *cgo_i; unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy); // If we didn't emit an add last time through the loop, we need to now so // that the base reg is updated appropriately. if (pendingAdd) { assert(pendingAddReg != 0 && "Uninitialized register in pending add!"); BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg) .addReg(pendingAddReg); basePtrReg = nextBasePtrReg; nextBasePtrReg = makeAnotherReg(Type::IntTy); pendingAddReg = 0; pendingAdd = false; } if (cgo.isMul) { // We know the elementSize is a constant, so we can emit a constant mul unsigned TmpReg = makeAnotherReg(Type::IntTy); doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size); pendingAddReg = basePtrReg; pendingAdd = true; } else { // Try and generate an immediate addition if possible if (cgo.size->isNullValue()) { BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg) .addReg(basePtrReg); } else if (canUseAsImmediateForOpcode(cgo.size, 0)) { BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg) .addSImm(cgo.size->getValue()); } else { unsigned Op1r = getReg(cgo.size, MBB, IP); BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg) .addReg(Op1r); } } basePtrReg = nextBasePtrReg; } // Add the current base register plus any accumulated constant value ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue); // If we are emitting this during a fold, copy the current base register to // the target, and save the current constant offset so the folding load or // store can try and use it as an immediate. if (GEPIsFolded) { // If this is a folded GEP and the last element was an index, then we need // to do some extra work to turn a shift/add/stw into a shift/stwx if (pendingAdd && 0 == remainder->getValue()) { assert(pendingAddReg != 0 && "Uninitialized register in pending add!"); *PendingAddReg = pendingAddReg; } else { *PendingAddReg = 0; if (pendingAdd) { unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy); assert(pendingAddReg != 0 && "Uninitialized register in pending add!"); BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg) .addReg(pendingAddReg); basePtrReg = nextBasePtrReg; } } BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg) .addReg(basePtrReg); *RemainderPtr = remainder; return; } // If we still have a pending add at this point, emit it now if (pendingAdd) { unsigned TmpReg = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg) .addReg(basePtrReg); basePtrReg = TmpReg; } // After we have processed all the indices, the result is left in // basePtrReg. Move it to the register where we were expected to // put the answer. if (remainder->isNullValue()) { BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg) .addReg(basePtrReg); } else if (canUseAsImmediateForOpcode(remainder, 0)) { BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg) .addSImm(remainder->getValue()); } else { unsigned Op1r = getReg(remainder, MBB, IP); BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r); } } /// visitAllocaInst - If this is a fixed size alloca, allocate space from the /// frame manager, otherwise do it the hard way. /// void ISel::visitAllocaInst(AllocaInst &I) { // If this is a fixed size alloca in the entry block for the function, we // statically stack allocate the space, so we don't need to do anything here. // if (dyn_castFixedAlloca(&I)) return; // Find the data size of the alloca inst's getAllocatedType. const Type *Ty = I.getAllocatedType(); unsigned TySize = TM.getTargetData().getTypeSize(Ty); // Create a register to hold the temporary result of multiplying the type size // constant by the variable amount. unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); // TotalSizeReg = mul , MachineBasicBlock::iterator MBBI = BB->end(); ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize); doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI); // AddedSize = add , 15 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15); // AlignedSize = and , ~15 unsigned AlignedSize = makeAnotherReg(Type::UIntTy); BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0) .addImm(0).addImm(27); // Subtract size from stack pointer, thereby allocating some space. BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize); // Put a pointer to the space into the result register, by copying // the stack pointer. BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1); // Inform the Frame Information that we have just allocated a variable-sized // object. F->getFrameInfo()->CreateVariableSizedObject(); } /// visitMallocInst - Malloc instructions are code generated into direct calls /// to the library malloc. /// void ISel::visitMallocInst(MallocInst &I) { unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); unsigned Arg; if (ConstantUInt *C = dyn_cast(I.getOperand(0))) { Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); } else { Arg = makeAnotherReg(Type::UIntTy); MachineBasicBlock::iterator MBBI = BB->end(); ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize); doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI); } std::vector Args; Args.push_back(ValueRecord(Arg, Type::UIntTy)); MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true); doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false); } /// visitFreeInst - Free instructions are code gen'd to call the free libc /// function. /// void ISel::visitFreeInst(FreeInst &I) { std::vector Args; Args.push_back(ValueRecord(I.getOperand(0))); MachineInstr *TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true); doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false); } /// createPPC64ISelSimple - This pass converts an LLVM function into a machine /// code representation is a very simple peep-hole fashion. /// FunctionPass *llvm::createPPC64ISelSimple(TargetMachine &TM) { return new ISel(TM); }