//===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_TWINE_H #define LLVM_ADT_TWINE_H #include "llvm/ADT/StringRef.h" #include "llvm/Support/DataTypes.h" #include #include namespace llvm { template class SmallVectorImpl; class StringRef; class raw_ostream; /// Twine - A lightweight data structure for efficiently representing the /// concatenation of temporary values as strings. /// /// A Twine is a kind of rope, it represents a concatenated string using a /// binary-tree, where the string is the preorder of the nodes. Since the /// Twine can be efficiently rendered into a buffer when its result is used, /// it avoids the cost of generating temporary values for intermediate string /// results -- particularly in cases when the Twine result is never /// required. By explicitly tracking the type of leaf nodes, we can also avoid /// the creation of temporary strings for conversions operations (such as /// appending an integer to a string). /// /// A Twine is not intended for use directly and should not be stored, its /// implementation relies on the ability to store pointers to temporary stack /// objects which may be deallocated at the end of a statement. Twines should /// only be used accepted as const references in arguments, when an API wishes /// to accept possibly-concatenated strings. /// /// Twines support a special 'null' value, which always concatenates to form /// itself, and renders as an empty string. This can be returned from APIs to /// effectively nullify any concatenations performed on the result. /// /// \b Implementation \n /// /// Given the nature of a Twine, it is not possible for the Twine's /// concatenation method to construct interior nodes; the result must be /// represented inside the returned value. For this reason a Twine object /// actually holds two values, the left- and right-hand sides of a /// concatenation. We also have nullary Twine objects, which are effectively /// sentinel values that represent empty strings. /// /// Thus, a Twine can effectively have zero, one, or two children. The \see /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for /// testing the number of children. /// /// We maintain a number of invariants on Twine objects (FIXME: Why): /// - Nullary twines are always represented with their Kind on the left-hand /// side, and the Empty kind on the right-hand side. /// - Unary twines are always represented with the value on the left-hand /// side, and the Empty kind on the right-hand side. /// - If a Twine has another Twine as a child, that child should always be /// binary (otherwise it could have been folded into the parent). /// /// These invariants are check by \see isValid(). /// /// \b Efficiency Considerations \n /// /// The Twine is designed to yield efficient and small code for common /// situations. For this reason, the concat() method is inlined so that /// concatenations of leaf nodes can be optimized into stores directly into a /// single stack allocated object. /// /// In practice, not all compilers can be trusted to optimize concat() fully, /// so we provide two additional methods (and accompanying operator+ /// overloads) to guarantee that particularly important cases (cstring plus /// StringRef) codegen as desired. class Twine { /// NodeKind - Represent the type of an argument. enum NodeKind { /// An empty string; the result of concatenating anything with it is also /// empty. NullKind, /// The empty string. EmptyKind, /// A pointer to a Twine instance. TwineKind, /// A pointer to a C string instance. CStringKind, /// A pointer to an std::string instance. StdStringKind, /// A pointer to a StringRef instance. StringRefKind, /// A pointer to a uint64_t value, to render as an unsigned decimal /// integer. UDec32Kind, /// A pointer to a uint64_t value, to render as a signed decimal integer. SDec32Kind, /// A pointer to a uint64_t value, to render as an unsigned decimal /// integer. UDec64Kind, /// A pointer to a uint64_t value, to render as a signed decimal integer. SDec64Kind, /// A pointer to a uint64_t value, to render as an unsigned hexadecimal /// integer. UHexKind }; private: /// LHS - The prefix in the concatenation, which may be uninitialized for /// Null or Empty kinds. const void *LHS; /// RHS - The suffix in the concatenation, which may be uninitialized for /// Null or Empty kinds. const void *RHS; /// LHSKind - The NodeKind of the left hand side, \see getLHSKind(). NodeKind LHSKind : 8; /// RHSKind - The NodeKind of the left hand side, \see getLHSKind(). NodeKind RHSKind : 8; private: /// Construct a nullary twine; the kind must be NullKind or EmptyKind. explicit Twine(NodeKind Kind) : LHSKind(Kind), RHSKind(EmptyKind) { assert(isNullary() && "Invalid kind!"); } /// Construct a binary twine. explicit Twine(const Twine &_LHS, const Twine &_RHS) : LHS(&_LHS), RHS(&_RHS), LHSKind(TwineKind), RHSKind(TwineKind) { assert(isValid() && "Invalid twine!"); } /// Construct a twine from explicit values. explicit Twine(const void *_LHS, NodeKind _LHSKind, const void *_RHS, NodeKind _RHSKind) : LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) { assert(isValid() && "Invalid twine!"); } /// isNull - Check for the null twine. bool isNull() const { return getLHSKind() == NullKind; } /// isEmpty - Check for the empty twine. bool isEmpty() const { return getLHSKind() == EmptyKind; } /// isNullary - Check if this is a nullary twine (null or empty). bool isNullary() const { return isNull() || isEmpty(); } /// isUnary - Check if this is a unary twine. bool isUnary() const { return getRHSKind() == EmptyKind && !isNullary(); } /// isBinary - Check if this is a binary twine. bool isBinary() const { return getLHSKind() != NullKind && getRHSKind() != EmptyKind; } /// isValid - Check if this is a valid twine (satisfying the invariants on /// order and number of arguments). bool isValid() const { // Nullary twines always have Empty on the RHS. if (isNullary() && getRHSKind() != EmptyKind) return false; // Null should never appear on the RHS. if (getRHSKind() == NullKind) return false; // The RHS cannot be non-empty if the LHS is empty. if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind) return false; // A twine child should always be binary. if (getLHSKind() == TwineKind && !static_cast(LHS)->isBinary()) return false; if (getRHSKind() == TwineKind && !static_cast(RHS)->isBinary()) return false; return true; } /// getLHSKind - Get the NodeKind of the left-hand side. NodeKind getLHSKind() const { return LHSKind; } /// getRHSKind - Get the NodeKind of the left-hand side. NodeKind getRHSKind() const { return RHSKind; } /// printOneChild - Print one child from a twine. void printOneChild(raw_ostream &OS, const void *Ptr, NodeKind Kind) const; /// printOneChildRepr - Print the representation of one child from a twine. void printOneChildRepr(raw_ostream &OS, const void *Ptr, NodeKind Kind) const; public: /// @name Constructors /// @{ /// Construct from an empty string. /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) { assert(isValid() && "Invalid twine!"); } /// Construct from a C string. /// /// We take care here to optimize "" into the empty twine -- this will be /// optimized out for string constants. This allows Twine arguments have /// default "" values, without introducing unnecessary string constants. /*implicit*/ Twine(const char *Str) : RHSKind(EmptyKind) { if (Str[0] != '\0') { LHS = Str; LHSKind = CStringKind; } else LHSKind = EmptyKind; assert(isValid() && "Invalid twine!"); } /// Construct from an std::string. /*implicit*/ Twine(const std::string &Str) : LHS(&Str), LHSKind(StdStringKind), RHSKind(EmptyKind) { assert(isValid() && "Invalid twine!"); } /// Construct from a StringRef. /*implicit*/ Twine(const StringRef &Str) : LHS(&Str), LHSKind(StringRefKind), RHSKind(EmptyKind) { assert(isValid() && "Invalid twine!"); } /// Construct a twine to print \arg Val as an unsigned decimal integer. explicit Twine(const uint32_t &Val) : LHS(&Val), LHSKind(UDec32Kind), RHSKind(EmptyKind) { } /// Construct a twine to print \arg Val as a signed decimal integer. explicit Twine(const int32_t &Val) : LHS(&Val), LHSKind(SDec32Kind), RHSKind(EmptyKind) { } /// Construct a twine to print \arg Val as an unsigned decimal integer. explicit Twine(const uint64_t &Val) : LHS(&Val), LHSKind(UDec64Kind), RHSKind(EmptyKind) { } /// Construct a twine to print \arg Val as a signed decimal integer. explicit Twine(const int64_t &Val) : LHS(&Val), LHSKind(SDec64Kind), RHSKind(EmptyKind) { } // FIXME: Unfortunately, to make sure this is as efficient as possible we // need extra binary constructors from particular types. We can't rely on // the compiler to be smart enough to fold operator+()/concat() down to the // right thing. Yet. /// Construct as the concatenation of a C string and a StringRef. /*implicit*/ Twine(const char *_LHS, const StringRef &_RHS) : LHS(_LHS), RHS(&_RHS), LHSKind(CStringKind), RHSKind(StringRefKind) { assert(isValid() && "Invalid twine!"); } /// Construct as the concatenation of a StringRef and a C string. /*implicit*/ Twine(const StringRef &_LHS, const char *_RHS) : LHS(&_LHS), RHS(_RHS), LHSKind(StringRefKind), RHSKind(CStringKind) { assert(isValid() && "Invalid twine!"); } /// Create a 'null' string, which is an empty string that always /// concatenates to form another empty string. static Twine createNull() { return Twine(NullKind); } /// @} /// @name Numeric Conversions /// @{ // Construct a twine to print \arg Val as an unsigned hexadecimal integer. static Twine utohexstr(const uint64_t &Val) { return Twine(&Val, UHexKind, 0, EmptyKind); } /// @} /// @name String Operations /// @{ Twine concat(const Twine &Suffix) const; /// @} /// @name Output & Conversion. /// @{ /// str - Return the twine contents as a std::string. std::string str() const; /// toVector - Write the concatenated string into the given SmallString or /// SmallVector. void toVector(SmallVectorImpl &Out) const; /// print - Write the concatenated string represented by this twine to the /// stream \arg OS. void print(raw_ostream &OS) const; /// dump - Dump the concatenated string represented by this twine to stderr. void dump() const; /// print - Write the representation of this twine to the stream \arg OS. void printRepr(raw_ostream &OS) const; /// dumpRepr - Dump the representation of this twine to stderr. void dumpRepr() const; /// @} }; /// @name Twine Inline Implementations /// @{ inline Twine Twine::concat(const Twine &Suffix) const { // Concatenation with null is null. if (isNull() || Suffix.isNull()) return Twine(NullKind); // Concatenation with empty yields the other side. if (isEmpty()) return Suffix; if (Suffix.isEmpty()) return *this; // Otherwise we need to create a new node, taking care to fold in unary // twines. const void *NewLHS = this, *NewRHS = &Suffix; NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind; if (isUnary()) { NewLHS = LHS; NewLHSKind = getLHSKind(); } if (Suffix.isUnary()) { NewRHS = Suffix.LHS; NewRHSKind = Suffix.getLHSKind(); } return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind); } inline Twine operator+(const Twine &LHS, const Twine &RHS) { return LHS.concat(RHS); } /// Additional overload to guarantee simplified codegen; this is equivalent to /// concat(). inline Twine operator+(const char *LHS, const StringRef &RHS) { return Twine(LHS, RHS); } /// Additional overload to guarantee simplified codegen; this is equivalent to /// concat(). inline Twine operator+(const StringRef &LHS, const char *RHS) { return Twine(LHS, RHS); } inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) { RHS.print(OS); return OS; } /// @} } #endif