//===- PPCInstrInfo.cpp - PowerPC32 Instruction Information -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the PowerPC implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "PPCInstrInfo.h" #include "PPCPredicates.h" #include "PPCGenInstrInfo.inc" #include "PPCTargetMachine.h" #include "llvm/CodeGen/MachineInstrBuilder.h" using namespace llvm; PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) : TargetInstrInfo(PPCInsts, sizeof(PPCInsts)/sizeof(PPCInsts[0])), TM(tm), RI(*TM.getSubtargetImpl(), *this) {} /// getPointerRegClass - Return the register class to use to hold pointers. /// This is used for addressing modes. const TargetRegisterClass *PPCInstrInfo::getPointerRegClass() const { if (TM.getSubtargetImpl()->isPPC64()) return &PPC::G8RCRegClass; else return &PPC::GPRCRegClass; } bool PPCInstrInfo::isMoveInstr(const MachineInstr& MI, unsigned& sourceReg, unsigned& destReg) const { MachineOpCode oc = MI.getOpcode(); if (oc == PPC::OR || oc == PPC::OR8 || oc == PPC::VOR || oc == PPC::OR4To8 || oc == PPC::OR8To4) { // or r1, r2, r2 assert(MI.getNumOperands() >= 3 && MI.getOperand(0).isRegister() && MI.getOperand(1).isRegister() && MI.getOperand(2).isRegister() && "invalid PPC OR instruction!"); if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } } else if (oc == PPC::ADDI) { // addi r1, r2, 0 assert(MI.getNumOperands() >= 3 && MI.getOperand(0).isRegister() && MI.getOperand(2).isImmediate() && "invalid PPC ADDI instruction!"); if (MI.getOperand(1).isRegister() && MI.getOperand(2).getImmedValue()==0) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } } else if (oc == PPC::ORI) { // ori r1, r2, 0 assert(MI.getNumOperands() >= 3 && MI.getOperand(0).isRegister() && MI.getOperand(1).isRegister() && MI.getOperand(2).isImmediate() && "invalid PPC ORI instruction!"); if (MI.getOperand(2).getImmedValue()==0) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } } else if (oc == PPC::FMRS || oc == PPC::FMRD || oc == PPC::FMRSD) { // fmr r1, r2 assert(MI.getNumOperands() >= 2 && MI.getOperand(0).isRegister() && MI.getOperand(1).isRegister() && "invalid PPC FMR instruction"); sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } else if (oc == PPC::MCRF) { // mcrf cr1, cr2 assert(MI.getNumOperands() >= 2 && MI.getOperand(0).isRegister() && MI.getOperand(1).isRegister() && "invalid PPC MCRF instruction"); sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } return false; } unsigned PPCInstrInfo::isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case PPC::LD: case PPC::LWZ: case PPC::LFS: case PPC::LFD: if (MI->getOperand(1).isImmediate() && !MI->getOperand(1).getImmedValue() && MI->getOperand(2).isFrameIndex()) { FrameIndex = MI->getOperand(2).getFrameIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } unsigned PPCInstrInfo::isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case PPC::STD: case PPC::STW: case PPC::STFS: case PPC::STFD: if (MI->getOperand(1).isImmediate() && !MI->getOperand(1).getImmedValue() && MI->getOperand(2).isFrameIndex()) { FrameIndex = MI->getOperand(2).getFrameIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } // commuteInstruction - We can commute rlwimi instructions, but only if the // rotate amt is zero. We also have to munge the immediates a bit. MachineInstr *PPCInstrInfo::commuteInstruction(MachineInstr *MI) const { // Normal instructions can be commuted the obvious way. if (MI->getOpcode() != PPC::RLWIMI) return TargetInstrInfo::commuteInstruction(MI); // Cannot commute if it has a non-zero rotate count. if (MI->getOperand(3).getImmedValue() != 0) return 0; // If we have a zero rotate count, we have: // M = mask(MB,ME) // Op0 = (Op1 & ~M) | (Op2 & M) // Change this to: // M = mask((ME+1)&31, (MB-1)&31) // Op0 = (Op2 & ~M) | (Op1 & M) // Swap op1/op2 unsigned Reg1 = MI->getOperand(1).getReg(); unsigned Reg2 = MI->getOperand(2).getReg(); bool Reg1IsKill = MI->getOperand(1).isKill(); bool Reg2IsKill = MI->getOperand(2).isKill(); MI->getOperand(2).setReg(Reg1); MI->getOperand(1).setReg(Reg2); if (Reg1IsKill) MI->getOperand(2).setIsKill(); else MI->getOperand(2).unsetIsKill(); if (Reg2IsKill) MI->getOperand(1).setIsKill(); else MI->getOperand(1).unsetIsKill(); // Swap the mask around. unsigned MB = MI->getOperand(4).getImmedValue(); unsigned ME = MI->getOperand(5).getImmedValue(); MI->getOperand(4).setImmedValue((ME+1) & 31); MI->getOperand(5).setImmedValue((MB-1) & 31); return MI; } void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { BuildMI(MBB, MI, get(PPC::NOP)); } // Branch analysis. bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, std::vector &Cond) const { // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode())) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; // If there is only one terminator instruction, process it. if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode())) { if (LastInst->getOpcode() == PPC::B) { TBB = LastInst->getOperand(0).getMachineBasicBlock(); return false; } else if (LastInst->getOpcode() == PPC::BCC) { // Block ends with fall-through condbranch. TBB = LastInst->getOperand(2).getMachineBasicBlock(); Cond.push_back(LastInst->getOperand(0)); Cond.push_back(LastInst->getOperand(1)); return false; } // Otherwise, don't know what this is. return true; } // Get the instruction before it if it's a terminator. MachineInstr *SecondLastInst = I; // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isTerminatorInstr((--I)->getOpcode())) return true; // If the block ends with PPC::B and PPC:BCC, handle it. if (SecondLastInst->getOpcode() == PPC::BCC && LastInst->getOpcode() == PPC::B) { TBB = SecondLastInst->getOperand(2).getMachineBasicBlock(); Cond.push_back(SecondLastInst->getOperand(0)); Cond.push_back(SecondLastInst->getOperand(1)); FBB = LastInst->getOperand(0).getMachineBasicBlock(); return false; } // Otherwise, can't handle this. return true; } unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return 0; --I; if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC) return 0; // Remove the branch. I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return 1; --I; if (I->getOpcode() != PPC::BCC) return 1; // Remove the branch. I->eraseFromParent(); return 2; } unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const std::vector &Cond) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 2 || Cond.size() == 0) && "PPC branch conditions have two components!"); // One-way branch. if (FBB == 0) { if (Cond.empty()) // Unconditional branch BuildMI(&MBB, get(PPC::B)).addMBB(TBB); else // Conditional branch BuildMI(&MBB, get(PPC::BCC)) .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); return 1; } // Two-way Conditional Branch. BuildMI(&MBB, get(PPC::BCC)) .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); BuildMI(&MBB, get(PPC::B)).addMBB(FBB); return 2; } bool PPCInstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const { if (MBB.empty()) return false; switch (MBB.back().getOpcode()) { case PPC::B: // Uncond branch. case PPC::BCTR: // Indirect branch. return true; default: return false; } } bool PPCInstrInfo:: ReverseBranchCondition(std::vector &Cond) const { assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); // Leave the CR# the same, but invert the condition. Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); return false; }