//===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===// // // This transform is designed to eliminate unreachable internal globals // FIXME: GlobalDCE should update the callgraph, not destroy it! // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO.h" #include "llvm/Module.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Analysis/CallGraph.h" #include "Support/DepthFirstIterator.h" #include "Support/Statistic.h" #include namespace { Statistic<> NumFunctions("globaldce","Number of functions removed"); Statistic<> NumVariables("globaldce","Number of global variables removed"); Statistic<> NumCPRs("globaldce", "Number of const pointer refs removed"); Statistic<> NumConsts("globaldce", "Number of init constants removed"); bool RemoveUnreachableFunctions(Module &M, CallGraph &CallGraph) { // Calculate which functions are reachable from the external functions in // the call graph. // std::set ReachableNodes(df_begin(&CallGraph), df_end(&CallGraph)); // Loop over the functions in the module twice. The first time is used to // drop references that functions have to each other before they are // deleted. The second pass removes the functions that need to be removed. // std::vector FunctionsToDelete; // Track unused functions for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { CallGraphNode *N = CallGraph[I]; if (!ReachableNodes.count(N)) { // Not reachable?? I->dropAllReferences(); N->removeAllCalledFunctions(); FunctionsToDelete.push_back(N); ++NumFunctions; } } // Nothing to do if no unreachable functions have been found... if (FunctionsToDelete.empty()) return false; // Unreachables functions have been found and should have no references to // them, delete them now. // for (std::vector::iterator I = FunctionsToDelete.begin(), E = FunctionsToDelete.end(); I != E; ++I) delete CallGraph.removeFunctionFromModule(*I); return true; } struct GlobalDCE : public Pass { // run - Do the GlobalDCE pass on the specified module, optionally updating // the specified callgraph to reflect the changes. // bool run(Module &M) { return RemoveUnreachableFunctions(M, getAnalysis()) | RemoveUnreachableGlobalVariables(M); } // getAnalysisUsage - This function works on the call graph of a module. // It is capable of updating the call graph to reflect the new state of the // module. // virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } private: std::vector WorkList; inline bool RemoveIfDead(GlobalValue *GV); void DestroyInitializer(Constant *C); bool RemoveUnreachableGlobalVariables(Module &M); bool RemoveUnusedConstantPointerRef(GlobalValue &GV); bool SafeToDestroyConstant(Constant *C); }; RegisterOpt X("globaldce", "Dead Global Elimination"); } Pass *createGlobalDCEPass() { return new GlobalDCE(); } // RemoveIfDead - If this global value is dead, remove it from the current // module and return true. // bool GlobalDCE::RemoveIfDead(GlobalValue *GV) { // If there is only one use of the global value, it might be a // ConstantPointerRef... which means that this global might actually be // dead. if (GV->use_size() == 1) RemoveUnusedConstantPointerRef(*GV); if (!GV->use_empty()) return false; if (GlobalVariable *GVar = dyn_cast(GV)) { // Eliminate all global variables that are unused, and that are internal, or // do not have an initializer. // if (!GVar->hasExternalLinkage() || !GVar->hasInitializer()) { Constant *Init = GVar->hasInitializer() ? GVar->getInitializer() : 0; GV->getParent()->getGlobalList().erase(GVar); ++NumVariables; // If there was an initializer for the global variable, try to destroy it // now. if (Init) DestroyInitializer(Init); // If the global variable is still on the worklist, remove it now. std::vector::iterator I = std::find(WorkList.begin(), WorkList.end(), GV); while (I != WorkList.end()) I = std::find(WorkList.erase(I), WorkList.end(), GV); return true; } } else { Function *F = cast(GV); // FIXME: TODO } return false; } // DestroyInitializer - A global variable was just destroyed and C is its // initializer. If we can, destroy C and all of the constants it refers to. // void GlobalDCE::DestroyInitializer(Constant *C) { // Cannot destroy constants still being used, and cannot destroy primitive // types. if (!C->use_empty() || C->getType()->isPrimitiveType()) return; // If this is a CPR, the global value referred to may be dead now! Add it to // the worklist. // if (ConstantPointerRef *CPR = dyn_cast(C)) { WorkList.push_back(CPR->getValue()); C->destroyConstant(); ++NumCPRs; } else { bool DestroyContents = true; // As an optimization to the GlobalDCE algorithm, do attempt to destroy the // contents of an array of primitive types, because we know that this will // never succeed, and there could be a lot of them. // if (ConstantArray *CA = dyn_cast(C)) if (CA->getType()->getElementType()->isPrimitiveType()) DestroyContents = false; // Nothing we can do with the subcontents // All other constants refer to other constants. Destroy them if possible // as well. // std::vector SubConstants; if (DestroyContents) SubConstants.insert(SubConstants.end(), C->op_begin(), C->op_end()); // Destroy the actual constant... C->destroyConstant(); ++NumConsts; if (DestroyContents) { // Remove duplicates from SubConstants, so that we do not call // DestroyInitializer on the same constant twice (the first call might // delete it, so this would be bad) // std::sort(SubConstants.begin(), SubConstants.end()); SubConstants.erase(std::unique(SubConstants.begin(), SubConstants.end()), SubConstants.end()); // Loop over the subconstants, destroying them as well. for (unsigned i = 0, e = SubConstants.size(); i != e; ++i) DestroyInitializer(cast(SubConstants[i])); } } } bool GlobalDCE::RemoveUnreachableGlobalVariables(Module &M) { bool Changed = false; WorkList.reserve(M.gsize()); // Insert all of the globals into the WorkList, making sure to run // RemoveUnusedConstantPointerRef at least once on all globals... // for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { Changed |= RemoveUnusedConstantPointerRef(*I); WorkList.push_back(I); } for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) { Changed |= RemoveUnusedConstantPointerRef(*I); WorkList.push_back(I); } // Loop over the worklist, deleting global objects that we can. Whenever we // delete something that might make something else dead, it gets added to the // worklist. // while (!WorkList.empty()) { GlobalValue *GV = WorkList.back(); WorkList.pop_back(); Changed |= RemoveIfDead(GV); } // Make sure that all memory is free'd from the worklist... std::vector().swap(WorkList); return Changed; } // RemoveUnusedConstantPointerRef - Loop over all of the uses of the specified // GlobalValue, looking for the constant pointer ref that may be pointing to it. // If found, check to see if the constant pointer ref is safe to destroy, and if // so, nuke it. This will reduce the reference count on the global value, which // might make it deader. // bool GlobalDCE::RemoveUnusedConstantPointerRef(GlobalValue &GV) { for (Value::use_iterator I = GV.use_begin(), E = GV.use_end(); I != E; ++I) if (ConstantPointerRef *CPR = dyn_cast(*I)) if (SafeToDestroyConstant(CPR)) { // Only if unreferenced... CPR->destroyConstant(); ++NumCPRs; return true; } return false; } // SafeToDestroyConstant - It is safe to destroy a constant iff it is only used // by constants itself. Note that constants cannot be cyclic, so this test is // pretty easy to implement recursively. // bool GlobalDCE::SafeToDestroyConstant(Constant *C) { for (Value::use_iterator I = C->use_begin(), E = C->use_end(); I != E; ++I) if (Constant *User = dyn_cast(*I)) { if (!SafeToDestroyConstant(User)) return false; } else { return false; } return true; }