//===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a simple two pass scheduler. The first pass attempts to push // backward any lengthy instructions and critical paths. The second pass packs // instructions into semi-optimal time slots. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include using namespace llvm; namespace { // Style of scheduling to use. enum ScheduleChoices { noScheduling, simpleScheduling, }; } // namespace cl::opt ScheduleStyle("sched", cl::desc("Choose scheduling style"), cl::init(noScheduling), cl::values( clEnumValN(noScheduling, "none", "Trivial emission with no analysis"), clEnumValN(simpleScheduling, "simple", "Minimize critical path and maximize processor utilization"), clEnumValEnd)); #ifndef NDEBUG static cl::opt ViewDAGs("view-sched-dags", cl::Hidden, cl::desc("Pop up a window to show sched dags as they are processed")); #else static const bool ViewDAGs = 0; #endif namespace { //===----------------------------------------------------------------------===// /// /// BitsIterator - Provides iteration through individual bits in a bit vector. /// template class BitsIterator { private: T Bits; // Bits left to iterate through public: /// Ctor. BitsIterator(T Initial) : Bits(Initial) {} /// Next - Returns the next bit set or zero if exhausted. inline T Next() { // Get the rightmost bit set T Result = Bits & -Bits; // Remove from rest Bits &= ~Result; // Return single bit or zero return Result; } }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// ResourceTally - Manages the use of resources over time intervals. Each /// item (slot) in the tally vector represents the resources used at a given /// moment. A bit set to 1 indicates that a resource is in use, otherwise /// available. An assumption is made that the tally is large enough to schedule /// all current instructions (asserts otherwise.) /// template class ResourceTally { private: std::vector Tally; // Resources used per slot typedef typename std::vector::iterator Iter; // Tally iterator /// AllInUse - Test to see if all of the resources in the slot are busy (set.) inline bool AllInUse(Iter Cursor, unsigned ResourceSet) { return (*Cursor & ResourceSet) == ResourceSet; } /// Skip - Skip over slots that use all of the specified resource (all are /// set.) Iter Skip(Iter Cursor, unsigned ResourceSet) { assert(ResourceSet && "At least one resource bit needs to bet set"); // Continue to the end while (true) { // Break out if one of the resource bits is not set if (!AllInUse(Cursor, ResourceSet)) return Cursor; // Try next slot Cursor++; assert(Cursor < Tally.end() && "Tally is not large enough for schedule"); } } /// FindSlots - Starting from Begin, locate N consecutive slots where at least /// one of the resource bits is available. Returns the address of first slot. Iter FindSlots(Iter Begin, unsigned N, unsigned ResourceSet, unsigned &Resource) { // Track position Iter Cursor = Begin; // Try all possible slots forward while (true) { // Skip full slots Cursor = Skip(Cursor, ResourceSet); // Determine end of interval Iter End = Cursor + N; assert(End <= Tally.end() && "Tally is not large enough for schedule"); // Iterate thru each resource BitsIterator Resources(ResourceSet & ~*Cursor); while (unsigned Res = Resources.Next()) { // Check if resource is available for next N slots // Break out if resource is busy Iter Interval = Cursor; for (; Interval < End && !(*Interval & Res); Interval++) {} // If available for interval, return where and which resource if (Interval == End) { Resource = Res; return Cursor; } // Otherwise, check if worth checking other resources if (AllInUse(Interval, ResourceSet)) { // Start looking beyond interval Cursor = Interval; break; } } Cursor++; } } /// Reserve - Mark busy (set) the specified N slots. void Reserve(Iter Begin, unsigned N, unsigned Resource) { // Determine end of interval Iter End = Begin + N; assert(End <= Tally.end() && "Tally is not large enough for schedule"); // Set resource bit in each slot for (; Begin < End; Begin++) *Begin |= Resource; } public: /// Initialize - Resize and zero the tally to the specified number of time /// slots. inline void Initialize(unsigned N) { Tally.assign(N, 0); // Initialize tally to all zeros. } // FindAndReserve - Locate and mark busy (set) N bits started at slot I, using // ResourceSet for choices. unsigned FindAndReserve(unsigned I, unsigned N, unsigned ResourceSet) { // Which resource used unsigned Resource; // Find slots for instruction. Iter Where = FindSlots(Tally.begin() + I, N, ResourceSet, Resource); // Reserve the slots Reserve(Where, N, Resource); // Return time slot (index) return Where - Tally.begin(); } }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// Node group - This struct is used to manage flagged node groups. /// class NodeInfo; class NodeGroup : public std::vector { private: int Pending; // Number of visits pending before // adding to order public: // Ctor. NodeGroup() : Pending(0) {} // Accessors inline NodeInfo *getLeader() { return empty() ? NULL : front(); } inline int getPending() const { return Pending; } inline void setPending(int P) { Pending = P; } inline int addPending(int I) { return Pending += I; } static void Add(NodeInfo *D, NodeInfo *U); static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U); }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// NodeInfo - This struct tracks information used to schedule the a node. /// class NodeInfo { private: int Pending; // Number of visits pending before // adding to order public: SDNode *Node; // DAG node unsigned Latency; // Cycles to complete instruction unsigned ResourceSet; // Bit vector of usable resources unsigned Slot; // Node's time slot NodeGroup *Group; // Grouping information unsigned VRBase; // Virtual register base // Ctor. NodeInfo(SDNode *N = NULL) : Pending(0) , Node(N) , Latency(0) , ResourceSet(0) , Slot(0) , Group(NULL) , VRBase(0) {} // Accessors inline bool isInGroup() const { assert(!Group || !Group->empty() && "Group with no members"); return Group != NULL; } inline bool isGroupLeader() const { return isInGroup() && Group->getLeader() == this; } inline int getPending() const { return Group ? Group->getPending() : Pending; } inline void setPending(int P) { if (Group) Group->setPending(P); else Pending = P; } inline int addPending(int I) { if (Group) return Group->addPending(I); else return Pending += I; } }; typedef std::vector::iterator NIIterator; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// NodeGroupIterator - Iterates over all the nodes indicated by the node info. /// If the node is in a group then iterate over the members of the group, /// otherwise just the node info. /// class NodeGroupIterator { private: NodeInfo *NI; // Node info NIIterator NGI; // Node group iterator NIIterator NGE; // Node group iterator end public: // Ctor. NodeGroupIterator(NodeInfo *N) : NI(N) { // If the node is in a group then set up the group iterator. Otherwise // the group iterators will trip first time out. if (N->isInGroup()) { // get Group NodeGroup *Group = NI->Group; NGI = Group->begin(); NGE = Group->end(); // Prevent this node from being used (will be in members list NI = NULL; } } /// next - Return the next node info, otherwise NULL. /// NodeInfo *next() { // If members list if (NGI != NGE) return *NGI++; // Use node as the result (may be NULL) NodeInfo *Result = NI; // Only use once NI = NULL; // Return node or NULL return Result; } }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// NodeGroupOpIterator - Iterates over all the operands of a node. If the node /// is a member of a group, this iterates over all the operands of all the /// members of the group. /// class NodeGroupOpIterator { private: NodeInfo *NI; // Node containing operands NodeGroupIterator GI; // Node group iterator SDNode::op_iterator OI; // Operand iterator SDNode::op_iterator OE; // Operand iterator end /// CheckNode - Test if node has more operands. If not get the next node /// skipping over nodes that have no operands. void CheckNode() { // Only if operands are exhausted first while (OI == OE) { // Get next node info NodeInfo *NI = GI.next(); // Exit if nodes are exhausted if (!NI) return; // Get node itself SDNode *Node = NI->Node; // Set up the operand iterators OI = Node->op_begin(); OE = Node->op_end(); } } public: // Ctor. NodeGroupOpIterator(NodeInfo *N) : NI(N), GI(N) {} /// isEnd - Returns true when not more operands are available. /// inline bool isEnd() { CheckNode(); return OI == OE; } /// next - Returns the next available operand. /// inline SDOperand next() { assert(OI != OE && "Not checking for end of NodeGroupOpIterator correctly"); return *OI++; } }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// SimpleSched - Simple two pass scheduler. /// class SimpleSched { private: // TODO - get ResourceSet from TII enum { RSInteger = 0x3, // Two integer units RSFloat = 0xC, // Two float units RSLoadStore = 0x30, // Two load store units RSOther = 0 // Processing unit independent }; MachineBasicBlock *BB; // Current basic block SelectionDAG &DAG; // DAG of the current basic block const TargetMachine &TM; // Target processor const TargetInstrInfo &TII; // Target instruction information const MRegisterInfo &MRI; // Target processor register information SSARegMap *RegMap; // Virtual/real register map MachineConstantPool *ConstPool; // Target constant pool unsigned NodeCount; // Number of nodes in DAG NodeInfo *Info; // Info for nodes being scheduled std::map Map; // Map nodes to info std::vector Ordering; // Emit ordering of nodes ResourceTally Tally; // Resource usage tally unsigned NSlots; // Total latency std::map VRMap; // Node to VR map static const unsigned NotFound = ~0U; // Search marker public: // Ctor. SimpleSched(SelectionDAG &D, MachineBasicBlock *bb) : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()), MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()), ConstPool(BB->getParent()->getConstantPool()), NSlots(0) { assert(&TII && "Target doesn't provide instr info?"); assert(&MRI && "Target doesn't provide register info?"); } // Run - perform scheduling. MachineBasicBlock *Run() { Schedule(); return BB; } private: /// getNI - Returns the node info for the specified node. /// inline NodeInfo *getNI(SDNode *Node) { return Map[Node]; } /// getVR - Returns the virtual register number of the node. /// inline unsigned getVR(SDOperand Op) { NodeInfo *NI = getNI(Op.Val); assert(NI->VRBase != 0 && "Node emitted out of order - late"); return NI->VRBase + Op.ResNo; } static bool isFlagDefiner(SDNode *A); static bool isFlagUser(SDNode *A); static bool isDefiner(NodeInfo *A, NodeInfo *B); static bool isPassiveNode(SDNode *Node); void IncludeNode(NodeInfo *NI); void VisitAll(); void Schedule(); void GatherNodeInfo(); bool isStrongDependency(NodeInfo *A, NodeInfo *B); bool isWeakDependency(NodeInfo *A, NodeInfo *B); void ScheduleBackward(); void ScheduleForward(); void EmitAll(); void EmitNode(NodeInfo *NI); static unsigned CountResults(SDNode *Node); static unsigned CountOperands(SDNode *Node); unsigned CreateVirtualRegisters(MachineInstr *MI, unsigned NumResults, const TargetInstrDescriptor &II); unsigned EmitDAG(SDOperand A); void printSI(std::ostream &O, NodeInfo *NI) const; void print(std::ostream &O) const; inline void dump(const char *tag) const { std::cerr << tag; dump(); } void dump() const; }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// class FlagUserIterator { private: SDNode *Definer; // Node defining flag SDNode::use_iterator UI; // User node iterator SDNode::use_iterator E; // End of user nodes unsigned MinRes; // Minimum flag result public: // Ctor. FlagUserIterator(SDNode *D) : Definer(D) , UI(D->use_begin()) , E(D->use_end()) , MinRes(D->getNumValues()) { // Find minimum flag result. while (MinRes && D->getValueType(MinRes - 1) == MVT::Flag) --MinRes; } /// isFlagUser - Return true if node uses definer's flag. bool isFlagUser(SDNode *U) { // For each operand (in reverse to only look at flags) for (unsigned N = U->getNumOperands(); 0 < N--;) { // Get operand SDOperand Op = U->getOperand(N); // Not user if there are no flags if (Op.getValueType() != MVT::Flag) return false; // Return true if it is one of the flag results if (Op.Val == Definer && Op.ResNo >= MinRes) return true; } // Not a flag user return false; } SDNode *next() { // Continue to next user while (UI != E) { // Next user node SDNode *User = *UI++; // Return true if is a flag user if (isFlagUser(User)) return User; } // No more user nodes return NULL; } }; } // namespace //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// Add - Adds a definer and user pair to a node group. /// void NodeGroup::Add(NodeInfo *D, NodeInfo *U) { // Get current groups NodeGroup *DGroup = D->Group; NodeGroup *UGroup = U->Group; // If both are members of groups if (DGroup && UGroup) { // There may have been another edge connecting if (DGroup == UGroup) return; // Add the pending users count DGroup->addPending(UGroup->getPending()); // For each member of the users group NodeGroupIterator UNGI(U); while (NodeInfo *UNI = UNGI.next() ) { // Change the group UNI->Group = DGroup; // For each member of the definers group NodeGroupIterator DNGI(D); while (NodeInfo *DNI = DNGI.next() ) { // Remove internal edges DGroup->addPending(-CountInternalUses(DNI, UNI)); } } // Merge the two lists DGroup->insert(DGroup->end(), UGroup->begin(), UGroup->end()); } else if (DGroup) { // Make user member of definers group U->Group = DGroup; // Add users uses to definers group pending DGroup->addPending(U->Node->use_size()); // For each member of the definers group NodeGroupIterator DNGI(D); while (NodeInfo *DNI = DNGI.next() ) { // Remove internal edges DGroup->addPending(-CountInternalUses(DNI, U)); } DGroup->push_back(U); } else if (UGroup) { // Make definer member of users group D->Group = UGroup; // Add definers uses to users group pending UGroup->addPending(D->Node->use_size()); // For each member of the users group NodeGroupIterator UNGI(U); while (NodeInfo *UNI = UNGI.next() ) { // Remove internal edges UGroup->addPending(-CountInternalUses(D, UNI)); } UGroup->insert(UGroup->begin(), D); } else { D->Group = U->Group = DGroup = new NodeGroup(); DGroup->addPending(D->Node->use_size() + U->Node->use_size() - CountInternalUses(D, U)); DGroup->push_back(D); DGroup->push_back(U); } } /// CountInternalUses - Returns the number of edges between the two nodes. /// unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) { unsigned N = 0; for (SDNode:: use_iterator UI = D->Node->use_begin(), E = D->Node->use_end(); UI != E; UI++) { if (*UI == U->Node) N++; } return N; } //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// isFlagDefiner - Returns true if the node defines a flag result. bool SimpleSched::isFlagDefiner(SDNode *A) { unsigned N = A->getNumValues(); return N && A->getValueType(N - 1) == MVT::Flag; } /// isFlagUser - Returns true if the node uses a flag result. /// bool SimpleSched::isFlagUser(SDNode *A) { unsigned N = A->getNumOperands(); return N && A->getOperand(N - 1).getValueType() == MVT::Flag; } /// isDefiner - Return true if node A is a definer for B. /// bool SimpleSched::isDefiner(NodeInfo *A, NodeInfo *B) { // While there are A nodes NodeGroupIterator NII(A); while (NodeInfo *NI = NII.next()) { // Extract node SDNode *Node = NI->Node; // While there operands in nodes of B NodeGroupOpIterator NGOI(B); while (!NGOI.isEnd()) { SDOperand Op = NGOI.next(); // If node from A defines a node in B if (Node == Op.Val) return true; } } return false; } /// isPassiveNode - Return true if the node is a non-scheduled leaf. /// bool SimpleSched::isPassiveNode(SDNode *Node) { if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; return false; } /// IncludeNode - Add node to NodeInfo vector. /// void SimpleSched::IncludeNode(NodeInfo *NI) { // Get node SDNode *Node = NI->Node; // Ignore entry node if (Node->getOpcode() == ISD::EntryToken) return; // Check current count for node int Count = NI->getPending(); // If the node is already in list if (Count < 0) return; // Decrement count to indicate a visit Count--; // If count has gone to zero then add node to list if (!Count) { // Add node if (NI->isInGroup()) { Ordering.push_back(NI->Group->getLeader()); } else { Ordering.push_back(NI); } // indicate node has been added Count--; } // Mark as visited with new count NI->setPending(Count); } /// VisitAll - Visit each node breadth-wise to produce an initial ordering. /// Note that the ordering in the Nodes vector is reversed. void SimpleSched::VisitAll() { // Add first element to list Ordering.push_back(getNI(DAG.getRoot().Val)); // Iterate through all nodes that have been added for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies // Visit all operands NodeGroupOpIterator NGI(Ordering[i]); while (!NGI.isEnd()) { // Get next operand SDOperand Op = NGI.next(); // Get node SDNode *Node = Op.Val; // Ignore passive nodes if (isPassiveNode(Node)) continue; // Check out node IncludeNode(getNI(Node)); } } // Add entry node last (IncludeNode filters entry nodes) if (DAG.getEntryNode().Val != DAG.getRoot().Val) Ordering.push_back(getNI(DAG.getEntryNode().Val)); // FIXME - Reverse the order for (unsigned i = 0, N = Ordering.size(), Half = N >> 1; i < Half; i++) { unsigned j = N - i - 1; NodeInfo *tmp = Ordering[i]; Ordering[i] = Ordering[j]; Ordering[j] = tmp; } } /// GatherNodeInfo - Get latency and resource information about each node. /// void SimpleSched::GatherNodeInfo() { // Allocate node information Info = new NodeInfo[NodeCount]; // Get base of all nodes table SelectionDAG::allnodes_iterator AllNodes = DAG.allnodes_begin(); // For each node being scheduled for (unsigned i = 0, N = NodeCount; i < N; i++) { // Get next node from DAG all nodes table SDNode *Node = AllNodes[i]; // Fast reference to node schedule info NodeInfo* NI = &Info[i]; // Set up map Map[Node] = NI; // Set node NI->Node = Node; // Set pending visit count NI->setPending(Node->use_size()); MVT::ValueType VT = Node->getValueType(0); if (Node->isTargetOpcode()) { MachineOpCode TOpc = Node->getTargetOpcode(); // FIXME: This is an ugly (but temporary!) hack to test the scheduler // before we have real target info. // FIXME NI->Latency = std::max(1, TII.maxLatency(TOpc)); // FIXME NI->ResourceSet = TII.resources(TOpc); if (TII.isCall(TOpc)) { NI->ResourceSet = RSInteger; NI->Latency = 40; } else if (TII.isLoad(TOpc)) { NI->ResourceSet = RSLoadStore; NI->Latency = 5; } else if (TII.isStore(TOpc)) { NI->ResourceSet = RSLoadStore; NI->Latency = 2; } else if (MVT::isInteger(VT)) { NI->ResourceSet = RSInteger; NI->Latency = 2; } else if (MVT::isFloatingPoint(VT)) { NI->ResourceSet = RSFloat; NI->Latency = 3; } else { NI->ResourceSet = RSOther; NI->Latency = 0; } } else { if (MVT::isInteger(VT)) { NI->ResourceSet = RSInteger; NI->Latency = 2; } else if (MVT::isFloatingPoint(VT)) { NI->ResourceSet = RSFloat; NI->Latency = 3; } else { NI->ResourceSet = RSOther; NI->Latency = 0; } } // Add one slot for the instruction itself NI->Latency++; // Sum up all the latencies for max tally size NSlots += NI->Latency; } // Put flagged nodes into groups for (unsigned i = 0, N = NodeCount; i < N; i++) { NodeInfo* NI = &Info[i]; SDNode *Node = NI->Node; if (isFlagDefiner(Node)) { FlagUserIterator FI(Node); while (SDNode *User = FI.next()) NodeGroup::Add(NI, getNI(User)); } } } /// isStrongDependency - Return true if node A has results used by node B. /// I.E., B must wait for latency of A. bool SimpleSched::isStrongDependency(NodeInfo *A, NodeInfo *B) { // If A defines for B then it's a strong dependency return isDefiner(A, B); } /// isWeakDependency Return true if node A produces a result that will /// conflict with operands of B. bool SimpleSched::isWeakDependency(NodeInfo *A, NodeInfo *B) { // TODO check for conflicting real registers and aliases #if 0 // FIXME - Since we are in SSA form and not checking register aliasing return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A); #else return A->Node->getOpcode() == ISD::EntryToken; #endif } /// ScheduleBackward - Schedule instructions so that any long latency /// instructions and the critical path get pushed back in time. Time is run in /// reverse to allow code reuse of the Tally and eliminate the overhead of /// biasing every slot indices against NSlots. void SimpleSched::ScheduleBackward() { // Size and clear the resource tally Tally.Initialize(NSlots); // Get number of nodes to schedule unsigned N = Ordering.size(); // For each node being scheduled for (unsigned i = N; 0 < i--;) { NodeInfo *NI = Ordering[i]; // Track insertion unsigned Slot = NotFound; // Compare against those previously scheduled nodes unsigned j = i + 1; for (; j < N; j++) { // Get following instruction NodeInfo *Other = Ordering[j]; // Check dependency against previously inserted nodes if (isStrongDependency(NI, Other)) { Slot = Other->Slot + Other->Latency; break; } else if (isWeakDependency(NI, Other)) { Slot = Other->Slot; break; } } // If independent of others (or first entry) if (Slot == NotFound) Slot = 0; // Find a slot where the needed resources are available if (NI->ResourceSet) Slot = Tally.FindAndReserve(Slot, NI->Latency, NI->ResourceSet); // Set node slot NI->Slot = Slot; // Insert sort based on slot j = i + 1; for (; j < N; j++) { // Get following instruction NodeInfo *Other = Ordering[j]; // Should we look further if (Slot >= Other->Slot) break; // Shuffle other into ordering Ordering[j - 1] = Other; } // Insert node in proper slot if (j != i + 1) Ordering[j - 1] = NI; } } /// ScheduleForward - Schedule instructions to maximize packing. /// void SimpleSched::ScheduleForward() { // Size and clear the resource tally Tally.Initialize(NSlots); // Get number of nodes to schedule unsigned N = Ordering.size(); // For each node being scheduled for (unsigned i = 0; i < N; i++) { NodeInfo *NI = Ordering[i]; // Track insertion unsigned Slot = NotFound; // Compare against those previously scheduled nodes unsigned j = i; for (; 0 < j--;) { // Get following instruction NodeInfo *Other = Ordering[j]; // Check dependency against previously inserted nodes if (isStrongDependency(Other, NI)) { Slot = Other->Slot + Other->Latency; break; } else if (isWeakDependency(Other, NI)) { Slot = Other->Slot; break; } } // If independent of others (or first entry) if (Slot == NotFound) Slot = 0; // Find a slot where the needed resources are available if (NI->ResourceSet) Slot = Tally.FindAndReserve(Slot, NI->Latency, NI->ResourceSet); // Set node slot NI->Slot = Slot; // Insert sort based on slot j = i; for (; 0 < j--;) { // Get following instruction NodeInfo *Other = Ordering[j]; // Should we look further if (Slot >= Other->Slot) break; // Shuffle other into ordering Ordering[j + 1] = Other; } // Insert node in proper slot if (j != i) Ordering[j + 1] = NI; } } /// EmitAll - Emit all nodes in schedule sorted order. /// void SimpleSched::EmitAll() { // For each node in the ordering for (unsigned i = 0, N = Ordering.size(); i < N; i++) { // Get the scheduling info NodeInfo *NI = Ordering[i]; #if 0 // Iterate through nodes NodeGroupIterator NGI(Ordering[i]); while (NodeInfo *NI = NGI.next()) EmitNode(NI); #else if (NI->isInGroup()) { if (NI->isGroupLeader()) { NodeGroupIterator NGI(Ordering[i]); while (NodeInfo *NI = NGI.next()) EmitNode(NI); } } else { EmitNode(NI); } #endif } } /// CountResults - The results of target nodes have register or immediate /// operands first, then an optional chain, and optional flag operands (which do /// not go into the machine instrs.) unsigned SimpleSched::CountResults(SDNode *Node) { unsigned N = Node->getNumValues(); while (N && Node->getValueType(N - 1) == MVT::Flag) --N; if (N && Node->getValueType(N - 1) == MVT::Other) --N; // Skip over chain result. return N; } /// CountOperands The inputs to target nodes have any actual inputs first, /// followed by an optional chain operand, then flag operands. Compute the /// number of actual operands that will go into the machine instr. unsigned SimpleSched::CountOperands(SDNode *Node) { unsigned N = Node->getNumOperands(); while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) --N; if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) --N; // Ignore chain if it exists. return N; } /// CreateVirtualRegisters - Add result register values for things that are /// defined by this instruction. unsigned SimpleSched::CreateVirtualRegisters(MachineInstr *MI, unsigned NumResults, const TargetInstrDescriptor &II) { // Create the result registers for this node and add the result regs to // the machine instruction. const TargetOperandInfo *OpInfo = II.OpInfo; unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass); MI->addRegOperand(ResultReg, MachineOperand::Def); for (unsigned i = 1; i != NumResults; ++i) { assert(OpInfo[i].RegClass && "Isn't a register operand!"); MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[0].RegClass), MachineOperand::Def); } return ResultReg; } /// EmitNode - Generate machine code for an node and needed dependencies. /// void SimpleSched::EmitNode(NodeInfo *NI) { unsigned VRBase = 0; // First virtual register for node SDNode *Node = NI->Node; // If machine instruction if (Node->isTargetOpcode()) { unsigned Opc = Node->getTargetOpcode(); const TargetInstrDescriptor &II = TII.get(Opc); unsigned NumResults = CountResults(Node); unsigned NodeOperands = CountOperands(Node); unsigned NumMIOperands = NodeOperands + NumResults; #ifndef NDEBUG assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&& "#operands for dag node doesn't match .td file!"); #endif // Create the new machine instruction. MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true); // Add result register values for things that are defined by this // instruction. if (NumResults) VRBase = CreateVirtualRegisters(MI, NumResults, II); // Emit all of the actual operands of this instruction, adding them to the // instruction as appropriate. for (unsigned i = 0; i != NodeOperands; ++i) { if (Node->getOperand(i).isTargetOpcode()) { // Note that this case is redundant with the final else block, but we // include it because it is the most common and it makes the logic // simpler here. assert(Node->getOperand(i).getValueType() != MVT::Other && Node->getOperand(i).getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); MI->addRegOperand(getVR(Node->getOperand(i)), MachineOperand::Use); } else if (ConstantSDNode *C = dyn_cast(Node->getOperand(i))) { MI->addZeroExtImm64Operand(C->getValue()); } else if (RegisterSDNode*R = dyn_cast(Node->getOperand(i))) { MI->addRegOperand(R->getReg(), MachineOperand::Use); } else if (GlobalAddressSDNode *TGA = dyn_cast(Node->getOperand(i))) { MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0); } else if (BasicBlockSDNode *BB = dyn_cast(Node->getOperand(i))) { MI->addMachineBasicBlockOperand(BB->getBasicBlock()); } else if (FrameIndexSDNode *FI = dyn_cast(Node->getOperand(i))) { MI->addFrameIndexOperand(FI->getIndex()); } else if (ConstantPoolSDNode *CP = dyn_cast(Node->getOperand(i))) { unsigned Idx = ConstPool->getConstantPoolIndex(CP->get()); MI->addConstantPoolIndexOperand(Idx); } else if (ExternalSymbolSDNode *ES = dyn_cast(Node->getOperand(i))) { MI->addExternalSymbolOperand(ES->getSymbol(), false); } else { assert(Node->getOperand(i).getValueType() != MVT::Other && Node->getOperand(i).getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); MI->addRegOperand(getVR(Node->getOperand(i)), MachineOperand::Use); } } // Now that we have emitted all operands, emit this instruction itself. if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) { BB->insert(BB->end(), MI); } else { // Insert this instruction into the end of the basic block, potentially // taking some custom action. BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB); } } else { switch (Node->getOpcode()) { default: Node->dump(); assert(0 && "This target-independent node should have been selected!"); case ISD::EntryToken: // fall thru case ISD::TokenFactor: break; case ISD::CopyToReg: { unsigned Val = getVR(Node->getOperand(2)); MRI.copyRegToReg(*BB, BB->end(), cast(Node->getOperand(1))->getReg(), Val, RegMap->getRegClass(Val)); break; } case ISD::CopyFromReg: { unsigned SrcReg = cast(Node->getOperand(1))->getReg(); // Figure out the register class to create for the destreg. const TargetRegisterClass *TRC = 0; if (MRegisterInfo::isVirtualRegister(SrcReg)) { TRC = RegMap->getRegClass(SrcReg); } else { // FIXME: we don't know what register class to generate this for. Do // a brute force search and pick the first match. :( for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(), E = MRI.regclass_end(); I != E; ++I) if ((*I)->contains(SrcReg)) { TRC = *I; break; } assert(TRC && "Couldn't find register class for reg copy!"); } // Create the reg, emit the copy. VRBase = RegMap->createVirtualRegister(TRC); MRI.copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC); break; } } } assert(NI->VRBase == 0 && "Node emitted out of order - early"); NI->VRBase = VRBase; } /// EmitDag - Generate machine code for an operand and needed dependencies. /// unsigned SimpleSched::EmitDAG(SDOperand Op) { std::map::iterator OpI = VRMap.lower_bound(Op.Val); if (OpI != VRMap.end() && OpI->first == Op.Val) return OpI->second + Op.ResNo; unsigned &OpSlot = VRMap.insert(OpI, std::make_pair(Op.Val, 0))->second; unsigned ResultReg = 0; if (Op.isTargetOpcode()) { unsigned Opc = Op.getTargetOpcode(); const TargetInstrDescriptor &II = TII.get(Opc); unsigned NumResults = CountResults(Op.Val); unsigned NodeOperands = CountOperands(Op.Val); unsigned NumMIOperands = NodeOperands + NumResults; #ifndef NDEBUG assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&& "#operands for dag node doesn't match .td file!"); #endif // Create the new machine instruction. MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true); // Add result register values for things that are defined by this // instruction. if (NumResults) ResultReg = CreateVirtualRegisters(MI, NumResults, II); // If there is a token chain operand, emit it first, as a hack to get avoid // really bad cases. if (Op.getNumOperands() > NodeOperands && Op.getOperand(NodeOperands).getValueType() == MVT::Other) { EmitDAG(Op.getOperand(NodeOperands)); } // Emit all of the actual operands of this instruction, adding them to the // instruction as appropriate. for (unsigned i = 0; i != NodeOperands; ++i) { if (Op.getOperand(i).isTargetOpcode()) { // Note that this case is redundant with the final else block, but we // include it because it is the most common and it makes the logic // simpler here. assert(Op.getOperand(i).getValueType() != MVT::Other && Op.getOperand(i).getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); MI->addRegOperand(EmitDAG(Op.getOperand(i)), MachineOperand::Use); } else if (ConstantSDNode *C = dyn_cast(Op.getOperand(i))) { MI->addZeroExtImm64Operand(C->getValue()); } else if (RegisterSDNode*R =dyn_cast(Op.getOperand(i))) { MI->addRegOperand(R->getReg(), MachineOperand::Use); } else if (GlobalAddressSDNode *TGA = dyn_cast(Op.getOperand(i))) { MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0); } else if (BasicBlockSDNode *BB = dyn_cast(Op.getOperand(i))) { MI->addMachineBasicBlockOperand(BB->getBasicBlock()); } else if (FrameIndexSDNode *FI = dyn_cast(Op.getOperand(i))) { MI->addFrameIndexOperand(FI->getIndex()); } else if (ConstantPoolSDNode *CP = dyn_cast(Op.getOperand(i))) { unsigned Idx = ConstPool->getConstantPoolIndex(CP->get()); MI->addConstantPoolIndexOperand(Idx); } else if (ExternalSymbolSDNode *ES = dyn_cast(Op.getOperand(i))) { MI->addExternalSymbolOperand(ES->getSymbol(), false); } else { assert(Op.getOperand(i).getValueType() != MVT::Other && Op.getOperand(i).getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); MI->addRegOperand(EmitDAG(Op.getOperand(i)), MachineOperand::Use); } } // Finally, if this node has any flag operands, we *must* emit them last, to // avoid emitting operations that might clobber the flags. if (Op.getNumOperands() > NodeOperands) { unsigned i = NodeOperands; if (Op.getOperand(i).getValueType() == MVT::Other) ++i; // the chain is already selected. for (unsigned N = Op.getNumOperands(); i < N; i++) { assert(Op.getOperand(i).getValueType() == MVT::Flag && "Must be flag operands!"); EmitDAG(Op.getOperand(i)); } } // Now that we have emitted all operands, emit this instruction itself. if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) { BB->insert(BB->end(), MI); } else { // Insert this instruction into the end of the basic block, potentially // taking some custom action. BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB); } } else { switch (Op.getOpcode()) { default: Op.Val->dump(); assert(0 && "This target-independent node should have been selected!"); case ISD::EntryToken: break; case ISD::TokenFactor: for (unsigned i = 0, N = Op.getNumOperands(); i < N; i++) { EmitDAG(Op.getOperand(i)); } break; case ISD::CopyToReg: { SDOperand FlagOp; if (Op.getNumOperands() == 4) { FlagOp = Op.getOperand(3); } if (Op.getOperand(0).Val != FlagOp.Val) { EmitDAG(Op.getOperand(0)); // Emit the chain. } unsigned Val = EmitDAG(Op.getOperand(2)); if (FlagOp.Val) { EmitDAG(FlagOp); } MRI.copyRegToReg(*BB, BB->end(), cast(Op.getOperand(1))->getReg(), Val, RegMap->getRegClass(Val)); break; } case ISD::CopyFromReg: { EmitDAG(Op.getOperand(0)); // Emit the chain. unsigned SrcReg = cast(Op.getOperand(1))->getReg(); // Figure out the register class to create for the destreg. const TargetRegisterClass *TRC = 0; if (MRegisterInfo::isVirtualRegister(SrcReg)) { TRC = RegMap->getRegClass(SrcReg); } else { // FIXME: we don't know what register class to generate this for. Do // a brute force search and pick the first match. :( for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(), E = MRI.regclass_end(); I != E; ++I) if ((*I)->contains(SrcReg)) { TRC = *I; break; } assert(TRC && "Couldn't find register class for reg copy!"); } // Create the reg, emit the copy. ResultReg = RegMap->createVirtualRegister(TRC); MRI.copyRegToReg(*BB, BB->end(), ResultReg, SrcReg, TRC); break; } } } OpSlot = ResultReg; return ResultReg+Op.ResNo; } /// Schedule - Order nodes according to selected style. /// void SimpleSched::Schedule() { switch (ScheduleStyle) { case simpleScheduling: // Number the nodes NodeCount = DAG.allnodes_size(); // Don't waste time if is only entry and return if (NodeCount > 3) { // Get latency and resource requirements GatherNodeInfo(); // Breadth first walk of DAG VisitAll(); DEBUG(dump("Pre-")); // Push back long instructions and critical path ScheduleBackward(); DEBUG(dump("Mid-")); // Pack instructions to maximize resource utilization ScheduleForward(); DEBUG(dump("Post-")); // Emit in scheduled order EmitAll(); break; } // fall thru case noScheduling: // Emit instructions in using a DFS from the exit root EmitDAG(DAG.getRoot()); break; } } /// printSI - Print schedule info. /// void SimpleSched::printSI(std::ostream &O, NodeInfo *NI) const { #ifndef NDEBUG using namespace std; SDNode *Node = NI->Node; O << " " << hex << Node << ", RS=" << NI->ResourceSet << ", Lat=" << NI->Latency << ", Slot=" << NI->Slot << ", ARITY=(" << Node->getNumOperands() << "," << Node->getNumValues() << ")" << " " << Node->getOperationName(&DAG); if (isFlagDefiner(Node)) O << "<#"; if (isFlagUser(Node)) O << ">#"; #endif } /// print - Print ordering to specified output stream. /// void SimpleSched::print(std::ostream &O) const { #ifndef NDEBUG using namespace std; O << "Ordering\n"; for (unsigned i = 0, N = Ordering.size(); i < N; i++) { printSI(O, Ordering[i]); O << "\n"; } #endif } /// dump - Print ordering to std::cerr. /// void SimpleSched::dump() const { print(std::cerr); } //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each /// target node in the graph. void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) { if (ViewDAGs) SD.viewGraph(); BB = SimpleSched(SD, BB).Run(); }