//===- llvm/Support/ValueHandle.h - Value Smart Pointer classes -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the ValueHandle class and its sub-classes. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_VALUEHANDLE_H #define LLVM_SUPPORT_VALUEHANDLE_H #include "llvm/ADT/PointerIntPair.h" #include "llvm/Value.h" namespace llvm { class ValueHandleBase; // ValueHandleBase** is only 4-byte aligned. template<> class PointerLikeTypeTraits { public: static inline void *getAsVoidPointer(ValueHandleBase** P) { return P; } static inline ValueHandleBase **getFromVoidPointer(void *P) { return static_cast(P); } enum { NumLowBitsAvailable = 2 }; }; /// ValueHandleBase - This is the common base class of value handles. /// ValueHandle's are smart pointers to Value's that have special behavior when /// the value is deleted or ReplaceAllUsesWith'd. See the specific handles /// below for details. /// class ValueHandleBase { friend class Value; protected: /// HandleBaseKind - This indicates what base class the handle actually is. /// This is to avoid having a vtable for the light-weight handle pointers. The /// fully generally Callback version does have a vtable. enum HandleBaseKind { Assert, Weak, Callback }; private: PointerIntPair PrevPair; ValueHandleBase *Next; Value *VP; public: ValueHandleBase(HandleBaseKind Kind) : PrevPair(0, Kind), Next(0), VP(0) {} ValueHandleBase(HandleBaseKind Kind, Value *V) : PrevPair(0, Kind), Next(0), VP(V) { if (V) AddToUseList(); } ValueHandleBase(HandleBaseKind Kind, const ValueHandleBase &RHS) : PrevPair(0, Kind), Next(0), VP(RHS.VP) { if (VP) AddToExistingUseList(RHS.getPrevPtr()); } ~ValueHandleBase() { if (VP) RemoveFromUseList(); } Value *operator=(Value *RHS) { if (VP == RHS) return RHS; if (VP) RemoveFromUseList(); VP = RHS; if (VP) AddToUseList(); return RHS; } Value *operator=(const ValueHandleBase &RHS) { if (VP == RHS.VP) return RHS.VP; if (VP) RemoveFromUseList(); VP = RHS.VP; if (VP) AddToExistingUseList(RHS.getPrevPtr()); return VP; } Value *operator->() const { return getValPtr(); } Value &operator*() const { return *getValPtr(); } bool operator==(const Value *RHS) const { return VP == RHS; } bool operator==(const ValueHandleBase &RHS) const { return VP == RHS.VP; } bool operator!=(const Value *RHS) const { return VP != RHS; } bool operator!=(const ValueHandleBase &RHS) const { return VP != RHS.VP; } bool operator<(const Value *RHS) const { return VP < RHS; } bool operator<(const ValueHandleBase &RHS) const { return VP < RHS.VP; } bool operator>(const Value *RHS) const { return VP > RHS; } bool operator>(const ValueHandleBase &RHS) const { return VP > RHS.VP; } bool operator<=(const Value *RHS) const { return VP <= RHS; } bool operator<=(const ValueHandleBase &RHS) const { return VP <= RHS.VP; } bool operator>=(const Value *RHS) const { return VP >= RHS; } bool operator>=(const ValueHandleBase &RHS) const { return VP >= RHS.VP; } protected: Value *getValPtr() const { return VP; } private: // Callbacks made from Value. static void ValueIsDeleted(Value *V); static void ValueIsRAUWd(Value *Old, Value *New); // Internal implementation details. ValueHandleBase **getPrevPtr() const { return PrevPair.getPointer(); } HandleBaseKind getKind() const { return PrevPair.getInt(); } void setPrevPtr(ValueHandleBase **Ptr) { PrevPair.setPointer(Ptr); } /// AddToUseList - Add this ValueHandle to the use list for VP, where List is /// known to point into the existing use list. void AddToExistingUseList(ValueHandleBase **List); /// AddToUseList - Add this ValueHandle to the use list for VP. void AddToUseList(); /// RemoveFromUseList - Remove this ValueHandle from its current use list. void RemoveFromUseList(); }; /// WeakVH - This is a value handle that tries hard to point to a Value, even /// across RAUW operations, but will null itself out if the value is destroyed. /// this is useful for advisory sorts of information, but should not be used as /// the key of a map (since the map would have to rearrange itself when the /// pointer changes). class WeakVH : public ValueHandleBase { public: WeakVH() : ValueHandleBase(Weak) {} WeakVH(Value *P) : ValueHandleBase(Weak, P) {} WeakVH(const WeakVH &RHS) : ValueHandleBase(Weak, RHS) {} operator Value*() const { return getValPtr(); } }; /// AssertingVH - This is a Value Handle that points to a value and asserts out /// if the value is destroyed while the handle is still live. This is very /// useful for catching dangling pointer bugs and other things which can be /// non-obvious. One particularly useful place to use this is as the Key of a /// map. Dangling pointer bugs often lead to really subtle bugs that only occur /// if another object happens to get allocated to the same address as the old /// one. Using an AssertingVH ensures that an assert is triggered as soon as /// the bad delete occurs. /// /// Note that an AssertingVH handle does *not* follow values across RAUW /// operations. This means that RAUW's need to explicitly update the /// AssertingVH's as it moves. This is required because in non-assert mode this /// class turns into a trivial wrapper around a pointer. template class AssertingVH #ifndef NDEBUG : public ValueHandleBase #endif { #ifndef NDEBUG ValueTy *getValPtr() const { return static_cast(ValueHandleBase::getValPtr()); } void setValPtr(ValueTy *P) { ValueHandleBase::operator=(P); } #else ValueTy *ThePtr; ValueTy *getValPtr() const { return ThePtr; } void setValPtr(ValueTy *P) { ThePtr = P; } #endif public: #ifndef NDEBUG AssertingVH() : ValueHandleBase(Assert) {} AssertingVH(ValueTy *P) : ValueHandleBase(Assert, P) {} AssertingVH(const AssertingVH &RHS) : ValueHandleBase(Assert, RHS) {} #else AssertingVH() : ThePtr(0) {} AssertingVH(ValueTy *P) : ThePtr(P) {} #endif operator ValueTy*() const { return getValPtr(); } ValueTy *operator=(ValueTy *RHS) { setValPtr(RHS); return getValPtr(); } ValueTy *operator=(AssertingVH &RHS) { setValPtr(RHS.getValPtr()); return getValPtr(); } ValueTy *operator->() const { return getValPtr(); } ValueTy &operator*() const { return *getValPtr(); } // Duplicate these from the base class so that they work when assertions are // off. bool operator==(const Value *RHS) const { return getValPtr() == RHS; } bool operator!=(const Value *RHS) const { return getValPtr() != RHS; } bool operator<(const Value *RHS) const { return getValPtr() < RHS; } bool operator>(const Value *RHS) const { return getValPtr() > RHS; } bool operator<=(const Value *RHS) const { return getValPtr() <= RHS; } bool operator>=(const Value *RHS) const { return getValPtr() >= RHS; } bool operator==(const AssertingVH &RHS) const { return getValPtr() == RHS.getValPtr(); } bool operator!=(const AssertingVH &RHS) const { return getValPtr() != RHS.getValPtr(); } bool operator<(const AssertingVH &RHS) const { return getValPtr() < RHS.getValPtr(); } bool operator>(const AssertingVH &RHS) const { return getValPtr() > RHS.getValPtr(); } bool operator<=(const AssertingVH &RHS) const { return getValPtr() <= RHS.getValPtr(); } bool operator>=(const AssertingVH &RHS) const { return getValPtr() >= RHS.getValPtr(); } }; } // End llvm namespace #endif