//===- llvm/Transforms/DecomposeMultiDimRefs.cpp - Lower array refs to 1D -===// // // DecomposeMultiDimRefs - Convert multi-dimensional references consisting of // any combination of 2 or more array and structure indices into a sequence of // instructions (using getelementpr and cast) so that each instruction has at // most one index (except structure references, which need an extra leading // index of [0]). // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/Constant.h" #include "llvm/iMemory.h" #include "llvm/iOther.h" #include "llvm/BasicBlock.h" #include "llvm/Pass.h" #include "Support/StatisticReporter.h" static Statistic<> NumAdded("lowerrefs\t\t- New instructions added"); namespace { struct DecomposePass : public BasicBlockPass { virtual bool runOnBasicBlock(BasicBlock &BB); private: static bool decomposeArrayRef(BasicBlock::iterator &BBI); }; RegisterOpt X("lowerrefs", "Decompose multi-dimensional " "structure/array references"); } Pass *createDecomposeMultiDimRefsPass() { return new DecomposePass(); } // runOnBasicBlock - Entry point for array or structure references with multiple // indices. // bool DecomposePass::runOnBasicBlock(BasicBlock &BB) { bool Changed = false; for (BasicBlock::iterator II = BB.begin(); II != BB.end(); ) { if (MemAccessInst *MAI = dyn_cast(&*II)) if (MAI->getNumIndices() >= 2) { Changed = decomposeArrayRef(II) || Changed; // always modifies II continue; } ++II; } return Changed; } // Check for a constant (uint) 0. inline bool IsZero(Value* idx) { return (isa(idx) && cast(idx)->isNullValue()); } // For any MemAccessInst with 2 or more array and structure indices: // // opCode CompositeType* P, [uint|ubyte] idx1, ..., [uint|ubyte] idxN // // this function generates the foll sequence: // // ptr1 = getElementPtr P, idx1 // ptr2 = getElementPtr ptr1, 0, idx2 // ... // ptrN-1 = getElementPtr ptrN-2, 0, idxN-1 // opCode ptrN-1, 0, idxN // New-MAI // // Then it replaces the original instruction with this sequence, // and replaces all uses of the original instruction with New-MAI. // If idx1 is 0, we simply omit the first getElementPtr instruction. // // On return: BBI points to the instruction after the current one // (whether or not *BBI was replaced). // // Return value: true if the instruction was replaced; false otherwise. // bool DecomposePass::decomposeArrayRef(BasicBlock::iterator &BBI) { MemAccessInst &MAI = cast(*BBI); // If this instr two or fewer arguments and the first argument is 0, // the decomposed version is identical to the instruction itself. // This is common enough that it is worth checking for explicitly... if (MAI.getNumIndices() == 0 || (MAI.getNumIndices() <= 2 && IsZero(*MAI.idx_begin()))) { ++BBI; return false; } BasicBlock *BB = MAI.getParent(); Value *LastPtr = MAI.getPointerOperand(); // Remove the instruction from the stream BB->getInstList().remove(BBI); // The vector of new instructions to be created std::vector NewInsts; // Process each index except the last one. User::const_op_iterator OI = MAI.idx_begin(), OE = MAI.idx_end(); for (; OI+1 != OE; ++OI) { std::vector Indices; // If this is the first index and is 0, skip it and move on! if (OI == MAI.idx_begin()) { if (IsZero(*OI)) continue; } else // Not the first index: include initial [0] to deref the last ptr Indices.push_back(Constant::getNullValue(Type::UIntTy)); Indices.push_back(*OI); // New Instruction: nextPtr1 = GetElementPtr LastPtr, Indices LastPtr = new GetElementPtrInst(LastPtr, Indices, "ptr1"); NewInsts.push_back(cast(LastPtr)); ++NumAdded; } // Now create a new instruction to replace the original one // const PointerType *PtrTy = cast(LastPtr->getType()); // Get the final index vector, including an initial [0] as before. std::vector Indices; Indices.push_back(Constant::getNullValue(Type::UIntTy)); Indices.push_back(*OI); Instruction *NewI = 0; switch(MAI.getOpcode()) { case Instruction::Load: NewI = new LoadInst(LastPtr, Indices, MAI.getName()); break; case Instruction::Store: NewI = new StoreInst(MAI.getOperand(0), LastPtr, Indices); break; case Instruction::GetElementPtr: NewI = new GetElementPtrInst(LastPtr, Indices, MAI.getName()); break; default: assert(0 && "Unrecognized memory access instruction"); } NewInsts.push_back(NewI); // Replace all uses of the old instruction with the new MAI.replaceAllUsesWith(NewI); // Now delete the old instruction... delete &MAI; // Insert all of the new instructions... BB->getInstList().insert(BBI, NewInsts.begin(), NewInsts.end()); // Advance the iterator to the instruction following the one just inserted... BBI = NewInsts.back(); ++BBI; return true; }