//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The inline spiller modifies the machine function directly instead of // inserting spills and restores in VirtRegMap. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "Spiller.h" #include "VirtRegMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveRangeEdit.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstrBundle.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); STATISTIC(NumSnippets, "Number of spilled snippets"); STATISTIC(NumSpills, "Number of spills inserted"); STATISTIC(NumSpillsRemoved, "Number of spills removed"); STATISTIC(NumReloads, "Number of reloads inserted"); STATISTIC(NumReloadsRemoved, "Number of reloads removed"); STATISTIC(NumFolded, "Number of folded stack accesses"); STATISTIC(NumFoldedLoads, "Number of folded loads"); STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads"); STATISTIC(NumHoists, "Number of hoisted spills"); static cl::opt DisableHoisting("disable-spill-hoist", cl::Hidden, cl::desc("Disable inline spill hoisting")); namespace { class InlineSpiller : public Spiller { MachineFunction &MF; LiveIntervals &LIS; LiveStacks &LSS; AliasAnalysis *AA; MachineDominatorTree &MDT; MachineLoopInfo &Loops; VirtRegMap &VRM; MachineFrameInfo &MFI; MachineRegisterInfo &MRI; const TargetInstrInfo &TII; const TargetRegisterInfo &TRI; // Variables that are valid during spill(), but used by multiple methods. LiveRangeEdit *Edit; LiveInterval *StackInt; int StackSlot; unsigned Original; // All registers to spill to StackSlot, including the main register. SmallVector RegsToSpill; // All COPY instructions to/from snippets. // They are ignored since both operands refer to the same stack slot. SmallPtrSet SnippetCopies; // Values that failed to remat at some point. SmallPtrSet UsedValues; public: // Information about a value that was defined by a copy from a sibling // register. struct SibValueInfo { // True when all reaching defs were reloads: No spill is necessary. bool AllDefsAreReloads; // True when value is defined by an original PHI not from splitting. bool DefByOrigPHI; // True when the COPY defining this value killed its source. bool KillsSource; // The preferred register to spill. unsigned SpillReg; // The value of SpillReg that should be spilled. VNInfo *SpillVNI; // The block where SpillVNI should be spilled. Currently, this must be the // block containing SpillVNI->def. MachineBasicBlock *SpillMBB; // A defining instruction that is not a sibling copy or a reload, or NULL. // This can be used as a template for rematerialization. MachineInstr *DefMI; // List of values that depend on this one. These values are actually the // same, but live range splitting has placed them in different registers, // or SSA update needed to insert PHI-defs to preserve SSA form. This is // copies of the current value and phi-kills. Usually only phi-kills cause // more than one dependent value. TinyPtrVector Deps; SibValueInfo(unsigned Reg, VNInfo *VNI) : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false), SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {} // Returns true when a def has been found. bool hasDef() const { return DefByOrigPHI || DefMI; } }; private: // Values in RegsToSpill defined by sibling copies. typedef DenseMap SibValueMap; SibValueMap SibValues; // Dead defs generated during spilling. SmallVector DeadDefs; ~InlineSpiller() {} public: InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) : MF(mf), LIS(pass.getAnalysis()), LSS(pass.getAnalysis()), AA(&pass.getAnalysis()), MDT(pass.getAnalysis()), Loops(pass.getAnalysis()), VRM(vrm), MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()), TII(*mf.getTarget().getInstrInfo()), TRI(*mf.getTarget().getRegisterInfo()) {} void spill(LiveRangeEdit &); private: bool isSnippet(const LiveInterval &SnipLI); void collectRegsToSpill(); bool isRegToSpill(unsigned Reg) { return std::find(RegsToSpill.begin(), RegsToSpill.end(), Reg) != RegsToSpill.end(); } bool isSibling(unsigned Reg); MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*); void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0); void analyzeSiblingValues(); bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI); void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); void markValueUsed(LiveInterval*, VNInfo*); bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI); void reMaterializeAll(); bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); bool foldMemoryOperand(ArrayRef >, MachineInstr *LoadMI = 0); void insertReload(LiveInterval &NewLI, SlotIndex, MachineBasicBlock::iterator MI); void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, SlotIndex, MachineBasicBlock::iterator MI); void spillAroundUses(unsigned Reg); void spillAll(); }; } namespace llvm { Spiller *createInlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) { return new InlineSpiller(pass, mf, vrm); } } //===----------------------------------------------------------------------===// // Snippets //===----------------------------------------------------------------------===// // When spilling a virtual register, we also spill any snippets it is connected // to. The snippets are small live ranges that only have a single real use, // leftovers from live range splitting. Spilling them enables memory operand // folding or tightens the live range around the single use. // // This minimizes register pressure and maximizes the store-to-load distance for // spill slots which can be important in tight loops. /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, /// otherwise return 0. static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) { if (!MI->isFullCopy()) return 0; if (MI->getOperand(0).getReg() == Reg) return MI->getOperand(1).getReg(); if (MI->getOperand(1).getReg() == Reg) return MI->getOperand(0).getReg(); return 0; } /// isSnippet - Identify if a live interval is a snippet that should be spilled. /// It is assumed that SnipLI is a virtual register with the same original as /// Edit->getReg(). bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { unsigned Reg = Edit->getReg(); // A snippet is a tiny live range with only a single instruction using it // besides copies to/from Reg or spills/fills. We accept: // // %snip = COPY %Reg / FILL fi# // %snip = USE %snip // %Reg = COPY %snip / SPILL %snip, fi# // if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) return false; MachineInstr *UseMI = 0; // Check that all uses satisfy our criteria. for (MachineRegisterInfo::reg_nodbg_iterator RI = MRI.reg_nodbg_begin(SnipLI.reg); MachineInstr *MI = RI.skipInstruction();) { // Allow copies to/from Reg. if (isFullCopyOf(MI, Reg)) continue; // Allow stack slot loads. int FI; if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) continue; // Allow stack slot stores. if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) continue; // Allow a single additional instruction. if (UseMI && MI != UseMI) return false; UseMI = MI; } return true; } /// collectRegsToSpill - Collect live range snippets that only have a single /// real use. void InlineSpiller::collectRegsToSpill() { unsigned Reg = Edit->getReg(); // Main register always spills. RegsToSpill.assign(1, Reg); SnippetCopies.clear(); // Snippets all have the same original, so there can't be any for an original // register. if (Original == Reg) return; for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg); MachineInstr *MI = RI.skipInstruction();) { unsigned SnipReg = isFullCopyOf(MI, Reg); if (!isSibling(SnipReg)) continue; LiveInterval &SnipLI = LIS.getInterval(SnipReg); if (!isSnippet(SnipLI)) continue; SnippetCopies.insert(MI); if (isRegToSpill(SnipReg)) continue; RegsToSpill.push_back(SnipReg); DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); ++NumSnippets; } } //===----------------------------------------------------------------------===// // Sibling Values //===----------------------------------------------------------------------===// // After live range splitting, some values to be spilled may be defined by // copies from sibling registers. We trace the sibling copies back to the // original value if it still exists. We need it for rematerialization. // // Even when the value can't be rematerialized, we still want to determine if // the value has already been spilled, or we may want to hoist the spill from a // loop. bool InlineSpiller::isSibling(unsigned Reg) { return TargetRegisterInfo::isVirtualRegister(Reg) && VRM.getOriginal(Reg) == Original; } #ifndef NDEBUG static raw_ostream &operator<<(raw_ostream &OS, const InlineSpiller::SibValueInfo &SVI) { OS << "spill " << PrintReg(SVI.SpillReg) << ':' << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def; if (SVI.SpillMBB) OS << " in BB#" << SVI.SpillMBB->getNumber(); if (SVI.AllDefsAreReloads) OS << " all-reloads"; if (SVI.DefByOrigPHI) OS << " orig-phi"; if (SVI.KillsSource) OS << " kill"; OS << " deps["; for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i) OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def; OS << " ]"; if (SVI.DefMI) OS << " def: " << *SVI.DefMI; else OS << '\n'; return OS; } #endif /// propagateSiblingValue - Propagate the value in SVI to dependents if it is /// known. Otherwise remember the dependency for later. /// /// @param SVI SibValues entry to propagate. /// @param VNI Dependent value, or NULL to propagate to all saved dependents. void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVI, VNInfo *VNI) { // When VNI is non-NULL, add it to SVI's deps, and only propagate to that. TinyPtrVector FirstDeps; if (VNI) { FirstDeps.push_back(VNI); SVI->second.Deps.push_back(VNI); } // Has the value been completely determined yet? If not, defer propagation. if (!SVI->second.hasDef()) return; // Work list of values to propagate. It would be nice to use a SetVector // here, but then we would be forced to use a SmallSet. SmallVector WorkList(1, SVI); SmallPtrSet WorkSet; do { SVI = WorkList.pop_back_val(); WorkSet.erase(SVI->first); TinyPtrVector *Deps = VNI ? &FirstDeps : &SVI->second.Deps; VNI = 0; SibValueInfo &SV = SVI->second; if (!SV.SpillMBB) SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def); DEBUG(dbgs() << " prop to " << Deps->size() << ": " << SVI->first->id << '@' << SVI->first->def << ":\t" << SV); assert(SV.hasDef() && "Propagating undefined value"); // Should this value be propagated as a preferred spill candidate? We don't // propagate values of registers that are about to spill. bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg); unsigned SpillDepth = ~0u; for (TinyPtrVector::iterator DepI = Deps->begin(), DepE = Deps->end(); DepI != DepE; ++DepI) { SibValueMap::iterator DepSVI = SibValues.find(*DepI); assert(DepSVI != SibValues.end() && "Dependent value not in SibValues"); SibValueInfo &DepSV = DepSVI->second; if (!DepSV.SpillMBB) DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def); bool Changed = false; // Propagate defining instruction. if (!DepSV.hasDef()) { Changed = true; DepSV.DefMI = SV.DefMI; DepSV.DefByOrigPHI = SV.DefByOrigPHI; } // Propagate AllDefsAreReloads. For PHI values, this computes an AND of // all predecessors. if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) { Changed = true; DepSV.AllDefsAreReloads = false; } // Propagate best spill value. if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) { if (SV.SpillMBB == DepSV.SpillMBB) { // DepSV is in the same block. Hoist when dominated. if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) { // This is an alternative def earlier in the same MBB. // Hoist the spill as far as possible in SpillMBB. This can ease // register pressure: // // x = def // y = use x // s = copy x // // Hoisting the spill of s to immediately after the def removes the // interference between x and y: // // x = def // spill x // y = use x // // This hoist only helps when the DepSV copy kills its source. Changed = true; DepSV.SpillReg = SV.SpillReg; DepSV.SpillVNI = SV.SpillVNI; DepSV.SpillMBB = SV.SpillMBB; } } else { // DepSV is in a different block. if (SpillDepth == ~0u) SpillDepth = Loops.getLoopDepth(SV.SpillMBB); // Also hoist spills to blocks with smaller loop depth, but make sure // that the new value dominates. Non-phi dependents are always // dominated, phis need checking. if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) && (!DepSVI->first->isPHIDef() || MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) { Changed = true; DepSV.SpillReg = SV.SpillReg; DepSV.SpillVNI = SV.SpillVNI; DepSV.SpillMBB = SV.SpillMBB; } } } if (!Changed) continue; // Something changed in DepSVI. Propagate to dependents. if (WorkSet.insert(DepSVI->first)) WorkList.push_back(DepSVI); DEBUG(dbgs() << " update " << DepSVI->first->id << '@' << DepSVI->first->def << " to:\t" << DepSV); } } while (!WorkList.empty()); } /// traceSiblingValue - Trace a value that is about to be spilled back to the /// real defining instructions by looking through sibling copies. Always stay /// within the range of OrigVNI so the registers are known to carry the same /// value. /// /// Determine if the value is defined by all reloads, so spilling isn't /// necessary - the value is already in the stack slot. /// /// Return a defining instruction that may be a candidate for rematerialization. /// MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI, VNInfo *OrigVNI) { // Check if a cached value already exists. SibValueMap::iterator SVI; bool Inserted; tie(SVI, Inserted) = SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI))); if (!Inserted) { DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':' << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second); return SVI->second.DefMI; } DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':' << UseVNI->id << '@' << UseVNI->def << '\n'); // List of (Reg, VNI) that have been inserted into SibValues, but need to be // processed. SmallVector, 8> WorkList; WorkList.push_back(std::make_pair(UseReg, UseVNI)); do { unsigned Reg; VNInfo *VNI; tie(Reg, VNI) = WorkList.pop_back_val(); DEBUG(dbgs() << " " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def << ":\t"); // First check if this value has already been computed. SVI = SibValues.find(VNI); assert(SVI != SibValues.end() && "Missing SibValues entry"); // Trace through PHI-defs created by live range splitting. if (VNI->isPHIDef()) { // Stop at original PHIs. We don't know the value at the predecessors. if (VNI->def == OrigVNI->def) { DEBUG(dbgs() << "orig phi value\n"); SVI->second.DefByOrigPHI = true; SVI->second.AllDefsAreReloads = false; propagateSiblingValue(SVI); continue; } // This is a PHI inserted by live range splitting. We could trace the // live-out value from predecessor blocks, but that search can be very // expensive if there are many predecessors and many more PHIs as // generated by tail-dup when it sees an indirectbr. Instead, look at // all the non-PHI defs that have the same value as OrigVNI. They must // jointly dominate VNI->def. This is not optimal since VNI may actually // be jointly dominated by a smaller subset of defs, so there is a change // we will miss a AllDefsAreReloads optimization. // Separate all values dominated by OrigVNI into PHIs and non-PHIs. SmallVector PHIs, NonPHIs; LiveInterval &LI = LIS.getInterval(Reg); LiveInterval &OrigLI = LIS.getInterval(Original); for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end(); VI != VE; ++VI) { VNInfo *VNI2 = *VI; if (VNI2->isUnused()) continue; if (!OrigLI.containsOneValue() && OrigLI.getVNInfoAt(VNI2->def) != OrigVNI) continue; if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def) PHIs.push_back(VNI2); else NonPHIs.push_back(VNI2); } DEBUG(dbgs() << "split phi value, checking " << PHIs.size() << " phi-defs, and " << NonPHIs.size() << " non-phi/orig defs\n"); // Create entries for all the PHIs. Don't add them to the worklist, we // are processing all of them in one go here. for (unsigned i = 0, e = PHIs.size(); i != e; ++i) SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i]))); // Add every PHI as a dependent of all the non-PHIs. for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) { VNInfo *NonPHI = NonPHIs[i]; // Known value? Try an insertion. tie(SVI, Inserted) = SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI))); // Add all the PHIs as dependents of NonPHI. for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi) SVI->second.Deps.push_back(PHIs[pi]); // This is the first time we see NonPHI, add it to the worklist. if (Inserted) WorkList.push_back(std::make_pair(Reg, NonPHI)); else // Propagate to all inserted PHIs, not just VNI. propagateSiblingValue(SVI); } // Next work list item. continue; } MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); assert(MI && "Missing def"); // Trace through sibling copies. if (unsigned SrcReg = isFullCopyOf(MI, Reg)) { if (isSibling(SrcReg)) { LiveInterval &SrcLI = LIS.getInterval(SrcReg); LiveRangeQuery SrcQ(SrcLI, VNI->def); assert(SrcQ.valueIn() && "Copy from non-existing value"); // Check if this COPY kills its source. SVI->second.KillsSource = SrcQ.isKill(); VNInfo *SrcVNI = SrcQ.valueIn(); DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':' << SrcVNI->id << '@' << SrcVNI->def << " kill=" << unsigned(SVI->second.KillsSource) << '\n'); // Known sibling source value? Try an insertion. tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI, SibValueInfo(SrcReg, SrcVNI))); // This is the first time we see Src, add it to the worklist. if (Inserted) WorkList.push_back(std::make_pair(SrcReg, SrcVNI)); propagateSiblingValue(SVI, VNI); // Next work list item. continue; } } // Track reachable reloads. SVI->second.DefMI = MI; SVI->second.SpillMBB = MI->getParent(); int FI; if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) { DEBUG(dbgs() << "reload\n"); propagateSiblingValue(SVI); // Next work list item. continue; } // Potential remat candidate. DEBUG(dbgs() << "def " << *MI); SVI->second.AllDefsAreReloads = false; propagateSiblingValue(SVI); } while (!WorkList.empty()); // Look up the value we were looking for. We already did this lookup at the // top of the function, but SibValues may have been invalidated. SVI = SibValues.find(UseVNI); assert(SVI != SibValues.end() && "Didn't compute requested info"); DEBUG(dbgs() << " traced to:\t" << SVI->second); return SVI->second.DefMI; } /// analyzeSiblingValues - Trace values defined by sibling copies back to /// something that isn't a sibling copy. /// /// Keep track of values that may be rematerializable. void InlineSpiller::analyzeSiblingValues() { SibValues.clear(); // No siblings at all? if (Edit->getReg() == Original) return; LiveInterval &OrigLI = LIS.getInterval(Original); for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { unsigned Reg = RegsToSpill[i]; LiveInterval &LI = LIS.getInterval(Reg); for (LiveInterval::const_vni_iterator VI = LI.vni_begin(), VE = LI.vni_end(); VI != VE; ++VI) { VNInfo *VNI = *VI; if (VNI->isUnused()) continue; MachineInstr *DefMI = 0; if (!VNI->isPHIDef()) { DefMI = LIS.getInstructionFromIndex(VNI->def); assert(DefMI && "No defining instruction"); } // Check possible sibling copies. if (VNI->isPHIDef() || DefMI->isCopy()) { VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); assert(OrigVNI && "Def outside original live range"); if (OrigVNI->def != VNI->def) DefMI = traceSiblingValue(Reg, VNI, OrigVNI); } if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) { DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def << " may remat from " << *DefMI); } } } } /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert /// a spill at a better location. bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) { SlotIndex Idx = LIS.getInstructionIndex(CopyMI); VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); SibValueMap::iterator I = SibValues.find(VNI); if (I == SibValues.end()) return false; const SibValueInfo &SVI = I->second; // Let the normal folding code deal with the boring case. if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI) return false; // SpillReg may have been deleted by remat and DCE. if (!LIS.hasInterval(SVI.SpillReg)) { DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n'); SibValues.erase(I); return false; } LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg); if (!SibLI.containsValue(SVI.SpillVNI)) { DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n'); SibValues.erase(I); return false; } // Conservatively extend the stack slot range to the range of the original // value. We may be able to do better with stack slot coloring by being more // careful here. assert(StackInt && "No stack slot assigned yet."); LiveInterval &OrigLI = LIS.getInterval(Original); VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " << *StackInt << '\n'); // Already spilled everywhere. if (SVI.AllDefsAreReloads) { DEBUG(dbgs() << "\tno spill needed: " << SVI); ++NumOmitReloadSpill; return true; } // We are going to spill SVI.SpillVNI immediately after its def, so clear out // any later spills of the same value. eliminateRedundantSpills(SibLI, SVI.SpillVNI); MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def); MachineBasicBlock::iterator MII; if (SVI.SpillVNI->isPHIDef()) MII = MBB->SkipPHIsAndLabels(MBB->begin()); else { MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def); assert(DefMI && "Defining instruction disappeared"); MII = DefMI; ++MII; } // Insert spill without kill flag immediately after def. TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot, MRI.getRegClass(SVI.SpillReg), &TRI); --MII; // Point to store instruction. LIS.InsertMachineInstrInMaps(MII); DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII); ++NumSpills; ++NumHoists; return true; } /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any /// redundant spills of this value in SLI.reg and sibling copies. void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { assert(VNI && "Missing value"); SmallVector, 8> WorkList; WorkList.push_back(std::make_pair(&SLI, VNI)); assert(StackInt && "No stack slot assigned yet."); do { LiveInterval *LI; tie(LI, VNI) = WorkList.pop_back_val(); unsigned Reg = LI->reg; DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); // Regs to spill are taken care of. if (isRegToSpill(Reg)) continue; // Add all of VNI's live range to StackInt. StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); // Find all spills and copies of VNI. for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg); MachineInstr *MI = UI.skipInstruction();) { if (!MI->isCopy() && !MI->mayStore()) continue; SlotIndex Idx = LIS.getInstructionIndex(MI); if (LI->getVNInfoAt(Idx) != VNI) continue; // Follow sibling copies down the dominator tree. if (unsigned DstReg = isFullCopyOf(MI, Reg)) { if (isSibling(DstReg)) { LiveInterval &DstLI = LIS.getInterval(DstReg); VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); assert(DstVNI && "Missing defined value"); assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); WorkList.push_back(std::make_pair(&DstLI, DstVNI)); } continue; } // Erase spills. int FI; if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI); // eliminateDeadDefs won't normally remove stores, so switch opcode. MI->setDesc(TII.get(TargetOpcode::KILL)); DeadDefs.push_back(MI); ++NumSpillsRemoved; --NumSpills; } } } while (!WorkList.empty()); } //===----------------------------------------------------------------------===// // Rematerialization //===----------------------------------------------------------------------===// /// markValueUsed - Remember that VNI failed to rematerialize, so its defining /// instruction cannot be eliminated. See through snippet copies void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { SmallVector, 8> WorkList; WorkList.push_back(std::make_pair(LI, VNI)); do { tie(LI, VNI) = WorkList.pop_back_val(); if (!UsedValues.insert(VNI)) continue; if (VNI->isPHIDef()) { MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)); if (PVNI) WorkList.push_back(std::make_pair(LI, PVNI)); } continue; } // Follow snippet copies. MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); if (!SnippetCopies.count(MI)) continue; LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); assert(SnipVNI && "Snippet undefined before copy"); WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); } while (!WorkList.empty()); } /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineBasicBlock::iterator MI) { SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); if (!ParentVNI) { DEBUG(dbgs() << "\tadding flags: "); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) MO.setIsUndef(); } DEBUG(dbgs() << UseIdx << '\t' << *MI); return true; } if (SnippetCopies.count(MI)) return false; // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy. LiveRangeEdit::Remat RM(ParentVNI); SibValueMap::const_iterator SibI = SibValues.find(ParentVNI); if (SibI != SibValues.end()) RM.OrigMI = SibI->second.DefMI; if (!Edit->canRematerializeAt(RM, UseIdx, false)) { markValueUsed(&VirtReg, ParentVNI); DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); return false; } // If the instruction also writes VirtReg.reg, it had better not require the // same register for uses and defs. SmallVector, 8> Ops; MIBundleOperands::RegInfo RI = MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); if (RI.Tied) { markValueUsed(&VirtReg, ParentVNI); DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); return false; } // Before rematerializing into a register for a single instruction, try to // fold a load into the instruction. That avoids allocating a new register. if (RM.OrigMI->canFoldAsLoad() && foldMemoryOperand(Ops, RM.OrigMI)) { Edit->markRematerialized(RM.ParentVNI); ++NumFoldedLoads; return true; } // Alocate a new register for the remat. LiveInterval &NewLI = Edit->createFrom(Original); NewLI.markNotSpillable(); // Finally we can rematerialize OrigMI before MI. SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM, TRI); DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' << *LIS.getInstructionFromIndex(DefIdx)); // Replace operands for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = MI->getOperand(Ops[i].second); if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { MO.setReg(NewLI.reg); MO.setIsKill(); } } DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI); VNInfo *DefVNI = NewLI.getNextValue(DefIdx, LIS.getVNInfoAllocator()); NewLI.addRange(LiveRange(DefIdx, UseIdx.getRegSlot(), DefVNI)); DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); ++NumRemats; return true; } /// reMaterializeAll - Try to rematerialize as many uses as possible, /// and trim the live ranges after. void InlineSpiller::reMaterializeAll() { // analyzeSiblingValues has already tested all relevant defining instructions. if (!Edit->anyRematerializable(AA)) return; UsedValues.clear(); // Try to remat before all uses of snippets. bool anyRemat = false; for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { unsigned Reg = RegsToSpill[i]; LiveInterval &LI = LIS.getInterval(Reg); for (MachineRegisterInfo::use_nodbg_iterator RI = MRI.use_nodbg_begin(Reg); MachineInstr *MI = RI.skipBundle();) anyRemat |= reMaterializeFor(LI, MI); } if (!anyRemat) return; // Remove any values that were completely rematted. for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { unsigned Reg = RegsToSpill[i]; LiveInterval &LI = LIS.getInterval(Reg); for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) continue; MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); MI->addRegisterDead(Reg, &TRI); if (!MI->allDefsAreDead()) continue; DEBUG(dbgs() << "All defs dead: " << *MI); DeadDefs.push_back(MI); } } // Eliminate dead code after remat. Note that some snippet copies may be // deleted here. if (DeadDefs.empty()) return; DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); // Get rid of deleted and empty intervals. for (unsigned i = RegsToSpill.size(); i != 0; --i) { unsigned Reg = RegsToSpill[i-1]; if (!LIS.hasInterval(Reg)) { RegsToSpill.erase(RegsToSpill.begin() + (i - 1)); continue; } LiveInterval &LI = LIS.getInterval(Reg); if (!LI.empty()) continue; Edit->eraseVirtReg(Reg); RegsToSpill.erase(RegsToSpill.begin() + (i - 1)); } DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); } //===----------------------------------------------------------------------===// // Spilling //===----------------------------------------------------------------------===// /// If MI is a load or store of StackSlot, it can be removed. bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { int FI = 0; unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI); bool IsLoad = InstrReg; if (!IsLoad) InstrReg = TII.isStoreToStackSlot(MI, FI); // We have a stack access. Is it the right register and slot? if (InstrReg != Reg || FI != StackSlot) return false; DEBUG(dbgs() << "Coalescing stack access: " << *MI); LIS.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); if (IsLoad) { ++NumReloadsRemoved; --NumReloads; } else { ++NumSpillsRemoved; --NumSpills; } return true; } /// foldMemoryOperand - Try folding stack slot references in Ops into their /// instructions. /// /// @param Ops Operand indices from analyzeVirtReg(). /// @param LoadMI Load instruction to use instead of stack slot when non-null. /// @return True on success. bool InlineSpiller:: foldMemoryOperand(ArrayRef > Ops, MachineInstr *LoadMI) { if (Ops.empty()) return false; // Don't attempt folding in bundles. MachineInstr *MI = Ops.front().first; if (Ops.back().first != MI || MI->isBundled()) return false; bool WasCopy = MI->isCopy(); unsigned ImpReg = 0; // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied // operands. SmallVector FoldOps; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { unsigned Idx = Ops[i].second; MachineOperand &MO = MI->getOperand(Idx); if (MO.isImplicit()) { ImpReg = MO.getReg(); continue; } // FIXME: Teach targets to deal with subregs. if (MO.getSubReg()) return false; // We cannot fold a load instruction into a def. if (LoadMI && MO.isDef()) return false; // Tied use operands should not be passed to foldMemoryOperand. if (!MI->isRegTiedToDefOperand(Idx)) FoldOps.push_back(Idx); } MachineInstr *FoldMI = LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI) : TII.foldMemoryOperand(MI, FoldOps, StackSlot); if (!FoldMI) return false; LIS.ReplaceMachineInstrInMaps(MI, FoldMI); MI->eraseFromParent(); // TII.foldMemoryOperand may have left some implicit operands on the // instruction. Strip them. if (ImpReg) for (unsigned i = FoldMI->getNumOperands(); i; --i) { MachineOperand &MO = FoldMI->getOperand(i - 1); if (!MO.isReg() || !MO.isImplicit()) break; if (MO.getReg() == ImpReg) FoldMI->RemoveOperand(i - 1); } DEBUG(dbgs() << "\tfolded: " << LIS.getInstructionIndex(FoldMI) << '\t' << *FoldMI); if (!WasCopy) ++NumFolded; else if (Ops.front().second == 0) ++NumSpills; else ++NumReloads; return true; } /// insertReload - Insert a reload of NewLI.reg before MI. void InlineSpiller::insertReload(LiveInterval &NewLI, SlotIndex Idx, MachineBasicBlock::iterator MI) { MachineBasicBlock &MBB = *MI->getParent(); TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot, MRI.getRegClass(NewLI.reg), &TRI); --MI; // Point to load instruction. SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot(); // Some (out-of-tree) targets have EC reload instructions. if (MachineOperand *MO = MI->findRegisterDefOperand(NewLI.reg)) if (MO->isEarlyClobber()) LoadIdx = LoadIdx.getRegSlot(true); DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI); VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, LIS.getVNInfoAllocator()); NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI)); ++NumReloads; } /// insertSpill - Insert a spill of NewLI.reg after MI. void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, SlotIndex Idx, MachineBasicBlock::iterator MI) { MachineBasicBlock &MBB = *MI->getParent(); TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot, MRI.getRegClass(NewLI.reg), &TRI); --MI; // Point to store instruction. SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot(); DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI); VNInfo *StoreVNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI)); ++NumSpills; } /// spillAroundUses - insert spill code around each use of Reg. void InlineSpiller::spillAroundUses(unsigned Reg) { DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); LiveInterval &OldLI = LIS.getInterval(Reg); // Iterate over instructions using Reg. for (MachineRegisterInfo::reg_iterator RegI = MRI.reg_begin(Reg); MachineInstr *MI = RegI.skipBundle();) { // Debug values are not allowed to affect codegen. if (MI->isDebugValue()) { // Modify DBG_VALUE now that the value is in a spill slot. uint64_t Offset = MI->getOperand(1).getImm(); const MDNode *MDPtr = MI->getOperand(2).getMetadata(); DebugLoc DL = MI->getDebugLoc(); if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot, Offset, MDPtr, DL)) { DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); MachineBasicBlock *MBB = MI->getParent(); MBB->insert(MBB->erase(MI), NewDV); } else { DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI); MI->eraseFromParent(); } continue; } // Ignore copies to/from snippets. We'll delete them. if (SnippetCopies.count(MI)) continue; // Stack slot accesses may coalesce away. if (coalesceStackAccess(MI, Reg)) continue; // Analyze instruction. SmallVector, 8> Ops; MIBundleOperands::RegInfo RI = MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops); // Find the slot index where this instruction reads and writes OldLI. // This is usually the def slot, except for tied early clobbers. SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) if (SlotIndex::isSameInstr(Idx, VNI->def)) Idx = VNI->def; // Check for a sibling copy. unsigned SibReg = isFullCopyOf(MI, Reg); if (SibReg && isSibling(SibReg)) { // This may actually be a copy between snippets. if (isRegToSpill(SibReg)) { DEBUG(dbgs() << "Found new snippet copy: " << *MI); SnippetCopies.insert(MI); continue; } if (RI.Writes) { // Hoist the spill of a sib-reg copy. if (hoistSpill(OldLI, MI)) { // This COPY is now dead, the value is already in the stack slot. MI->getOperand(0).setIsDead(); DeadDefs.push_back(MI); continue; } } else { // This is a reload for a sib-reg copy. Drop spills downstream. LiveInterval &SibLI = LIS.getInterval(SibReg); eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); // The COPY will fold to a reload below. } } // Attempt to fold memory ops. if (foldMemoryOperand(Ops)) continue; // Allocate interval around instruction. // FIXME: Infer regclass from instruction alone. LiveInterval &NewLI = Edit->createFrom(Reg); NewLI.markNotSpillable(); if (RI.Reads) insertReload(NewLI, Idx, MI); // Rewrite instruction operands. bool hasLiveDef = false; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second); MO.setReg(NewLI.reg); if (MO.isUse()) { if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second)) MO.setIsKill(); } else { if (!MO.isDead()) hasLiveDef = true; } } DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI); // FIXME: Use a second vreg if instruction has no tied ops. if (RI.Writes) { if (hasLiveDef) insertSpill(NewLI, OldLI, Idx, MI); else { // This instruction defines a dead value. We don't need to spill it, // but do create a live range for the dead value. VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); NewLI.addRange(LiveRange(Idx, Idx.getDeadSlot(), VNI)); } } DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); } } /// spillAll - Spill all registers remaining after rematerialization. void InlineSpiller::spillAll() { // Update LiveStacks now that we are committed to spilling. if (StackSlot == VirtRegMap::NO_STACK_SLOT) { StackSlot = VRM.assignVirt2StackSlot(Original); StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); } else StackInt = &LSS.getInterval(StackSlot); if (Original != Edit->getReg()) VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]), StackInt->getValNumInfo(0)); DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); // Spill around uses of all RegsToSpill. for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) spillAroundUses(RegsToSpill[i]); // Hoisted spills may cause dead code. if (!DeadDefs.empty()) { DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); } // Finally delete the SnippetCopies. for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]); MachineInstr *MI = RI.skipInstruction();) { assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy"); // FIXME: Do this with a LiveRangeEdit callback. LIS.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); } } // Delete all spilled registers. for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) Edit->eraseVirtReg(RegsToSpill[i]); } void InlineSpiller::spill(LiveRangeEdit &edit) { ++NumSpilledRanges; Edit = &edit; assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) && "Trying to spill a stack slot."); // Share a stack slot among all descendants of Original. Original = VRM.getOriginal(edit.getReg()); StackSlot = VRM.getStackSlot(Original); StackInt = 0; DEBUG(dbgs() << "Inline spilling " << MRI.getRegClass(edit.getReg())->getName() << ':' << PrintReg(edit.getReg()) << ' ' << edit.getParent() << "\nFrom original " << LIS.getInterval(Original) << '\n'); assert(edit.getParent().isSpillable() && "Attempting to spill already spilled value."); assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); collectRegsToSpill(); analyzeSiblingValues(); reMaterializeAll(); // Remat may handle everything. if (!RegsToSpill.empty()) spillAll(); Edit->calculateRegClassAndHint(MF, Loops); }