//===-- RegAllocSimple.cpp - A simple generic register allocator ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a simple register allocator. *Very* simple: It immediate // spills every value right after it is computed, and it reloads all used // operands from the spill area to temporary registers before each instruction. // It does not keep values in registers across instructions. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Support/STLExtras.h" using namespace llvm; namespace { Statistic<> NumStores("ra-simple", "Number of stores added"); Statistic<> NumLoads ("ra-simple", "Number of loads added"); class RegAllocSimple : public MachineFunctionPass { MachineFunction *MF; const TargetMachine *TM; const MRegisterInfo *RegInfo; // StackSlotForVirtReg - Maps SSA Regs => frame index on the stack where // these values are spilled std::map StackSlotForVirtReg; // RegsUsed - Keep track of what registers are currently in use. This is a // bitset. std::vector RegsUsed; // RegClassIdx - Maps RegClass => which index we can take a register // from. Since this is a simple register allocator, when we need a register // of a certain class, we just take the next available one. std::map RegClassIdx; public: virtual const char *getPassName() const { return "Simple Register Allocator"; } /// runOnMachineFunction - Register allocate the whole function bool runOnMachineFunction(MachineFunction &Fn); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(PHIEliminationID); // Eliminate PHI nodes MachineFunctionPass::getAnalysisUsage(AU); } private: /// AllocateBasicBlock - Register allocate the specified basic block. void AllocateBasicBlock(MachineBasicBlock &MBB); /// getStackSpaceFor - This returns the offset of the specified virtual /// register on the stack, allocating space if necessary. int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); /// Given a virtual register, return a compatible physical register that is /// currently unused. /// /// Side effect: marks that register as being used until manually cleared /// unsigned getFreeReg(unsigned virtualReg); /// Moves value from memory into that register unsigned reloadVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg); /// Saves reg value on the stack (maps virtual register to stack value) void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned PhysReg); }; } /// getStackSpaceFor - This allocates space for the specified virtual /// register to be held on the stack. int RegAllocSimple::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { // Find the location VirtReg would belong... std::map::iterator I = StackSlotForVirtReg.lower_bound(VirtReg); if (I != StackSlotForVirtReg.end() && I->first == VirtReg) return I->second; // Already has space allocated? // Allocate a new stack object for this spill location... int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC); // Assign the slot... StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx)); return FrameIdx; } unsigned RegAllocSimple::getFreeReg(unsigned virtualReg) { const TargetRegisterClass* RC = MF->getSSARegMap()->getRegClass(virtualReg); TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); while (1) { unsigned regIdx = RegClassIdx[RC]++; assert(RI+regIdx != RE && "Not enough registers!"); unsigned PhysReg = *(RI+regIdx); if (!RegsUsed[PhysReg]) return PhysReg; } } unsigned RegAllocSimple::reloadVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg) { const TargetRegisterClass* RC = MF->getSSARegMap()->getRegClass(VirtReg); int FrameIdx = getStackSpaceFor(VirtReg, RC); unsigned PhysReg = getFreeReg(VirtReg); // Add move instruction(s) ++NumLoads; RegInfo->loadRegFromStackSlot(MBB, I, PhysReg, FrameIdx, RC); return PhysReg; } void RegAllocSimple::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned PhysReg) { const TargetRegisterClass* RC = MF->getSSARegMap()->getRegClass(VirtReg); int FrameIdx = getStackSpaceFor(VirtReg, RC); // Add move instruction(s) ++NumStores; RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIdx, RC); } void RegAllocSimple::AllocateBasicBlock(MachineBasicBlock &MBB) { // loop over each instruction for (MachineBasicBlock::iterator MI = MBB.begin(); MI != MBB.end(); ++MI) { // Made to combat the incorrect allocation of r2 = add r1, r1 std::map Virt2PhysRegMap; RegsUsed.resize(RegInfo->getNumRegs()); // a preliminary pass that will invalidate any registers that // are used by the instruction (including implicit uses) unsigned Opcode = MI->getOpcode(); const TargetInstrDescriptor &Desc = TM->getInstrInfo()->get(Opcode); const unsigned *Regs = Desc.ImplicitUses; while (*Regs) RegsUsed[*Regs++] = true; Regs = Desc.ImplicitDefs; while (*Regs) RegsUsed[*Regs++] = true; // Loop over uses, move from memory into registers for (int i = MI->getNumOperands() - 1; i >= 0; --i) { MachineOperand &op = MI->getOperand(i); if (op.isRegister() && op.getReg() && MRegisterInfo::isVirtualRegister(op.getReg())) { unsigned virtualReg = (unsigned) op.getReg(); DEBUG(std::cerr << "op: " << op << "\n"); DEBUG(std::cerr << "\t inst[" << i << "]: "; MI->print(std::cerr, TM)); // make sure the same virtual register maps to the same physical // register in any given instruction unsigned physReg = Virt2PhysRegMap[virtualReg]; if (physReg == 0) { if (op.isDef()) { if (!TM->getInstrInfo()->isTwoAddrInstr(MI->getOpcode()) || i) { physReg = getFreeReg(virtualReg); } else { // must be same register number as the first operand // This maps a = b + c into b += c, and saves b into a's spot assert(MI->getOperand(1).isRegister() && MI->getOperand(1).getReg() && MI->getOperand(1).isUse() && "Two address instruction invalid!"); physReg = MI->getOperand(1).getReg(); spillVirtReg(MBB, next(MI), virtualReg, physReg); MI->getOperand(1).setDef(); MI->RemoveOperand(0); break; // This is the last operand to process } spillVirtReg(MBB, next(MI), virtualReg, physReg); } else { physReg = reloadVirtReg(MBB, MI, virtualReg); Virt2PhysRegMap[virtualReg] = physReg; } } MI->SetMachineOperandReg(i, physReg); DEBUG(std::cerr << "virt: " << virtualReg << ", phys: " << op.getReg() << "\n"); } } RegClassIdx.clear(); RegsUsed.clear(); } } /// runOnMachineFunction - Register allocate the whole function /// bool RegAllocSimple::runOnMachineFunction(MachineFunction &Fn) { DEBUG(std::cerr << "Machine Function " << "\n"); MF = &Fn; TM = &MF->getTarget(); RegInfo = TM->getRegisterInfo(); // Loop over all of the basic blocks, eliminating virtual register references for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) AllocateBasicBlock(*MBB); StackSlotForVirtReg.clear(); return true; } FunctionPass *llvm::createSimpleRegisterAllocator() { return new RegAllocSimple(); }