//===- AsmParser.cpp - Parser for Assembly Files --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class implements the parser for assembly files. // //===----------------------------------------------------------------------===// #include "AsmParser.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; bool AsmParser::Error(SMLoc L, const char *Msg) { Lexer.PrintMessage(L, Msg); return true; } bool AsmParser::TokError(const char *Msg) { Lexer.PrintMessage(Lexer.getLoc(), Msg); return true; } bool AsmParser::Run() { // Prime the lexer. Lexer.Lex(); while (Lexer.isNot(asmtok::Eof)) if (ParseStatement()) return true; return false; } /// EatToEndOfStatement - Throw away the rest of the line for testing purposes. void AsmParser::EatToEndOfStatement() { while (Lexer.isNot(asmtok::EndOfStatement) && Lexer.isNot(asmtok::Eof)) Lexer.Lex(); // Eat EOL. if (Lexer.is(asmtok::EndOfStatement)) Lexer.Lex(); } struct AsmParser::X86Operand { enum { Register, Immediate, Memory } Kind; union { struct { unsigned RegNo; } Reg; struct { // FIXME: Should be a general expression. int64_t Val; } Imm; struct { unsigned SegReg; int64_t Disp; // FIXME: Should be a general expression. unsigned BaseReg; unsigned Scale; unsigned ScaleReg; } Mem; }; static X86Operand CreateReg(unsigned RegNo) { X86Operand Res; Res.Kind = Register; Res.Reg.RegNo = RegNo; return Res; } static X86Operand CreateImm(int64_t Val) { X86Operand Res; Res.Kind = Immediate; Res.Imm.Val = Val; return Res; } static X86Operand CreateMem(unsigned SegReg, int64_t Disp, unsigned BaseReg, unsigned Scale, unsigned ScaleReg) { X86Operand Res; Res.Kind = Memory; Res.Mem.SegReg = SegReg; Res.Mem.Disp = Disp; Res.Mem.BaseReg = BaseReg; Res.Mem.Scale = Scale; Res.Mem.ScaleReg = ScaleReg; return Res; } }; bool AsmParser::ParseX86Operand(X86Operand &Op) { switch (Lexer.getKind()) { default: return ParseX86MemOperand(Op); case asmtok::Register: // FIXME: Decode reg #. // FIXME: if a segment register, this could either be just the seg reg, or // the start of a memory operand. Op = X86Operand::CreateReg(0); Lexer.Lex(); // Eat register. return false; case asmtok::Dollar: { // $42 -> immediate. Lexer.Lex(); int64_t Val; if (ParseExpression(Val)) return TokError("expected integer constant"); Op = X86Operand::CreateReg(Val); return false; } //case asmtok::Star: // * %eax // * // Note that these are both "dereferenced". } } /// ParseX86MemOperand: segment: disp(basereg, indexreg, scale) bool AsmParser::ParseX86MemOperand(X86Operand &Op) { // FIXME: If SegReg ':' (e.g. %gs:), eat and remember. unsigned SegReg = 0; // We have to disambiguate a parenthesized expression "(4+5)" from the start // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The // only way to do this without lookahead is to eat the ( and see what is after // it. int64_t Disp = 0; if (Lexer.isNot(asmtok::LParen)) { if (ParseExpression(Disp)) return true; // After parsing the base expression we could either have a parenthesized // memory address or not. If not, return now. If so, eat the (. if (Lexer.isNot(asmtok::LParen)) { Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 0); return false; } // Eat the '('. Lexer.Lex(); } else { // Okay, we have a '('. We don't know if this is an expression or not, but // so we have to eat the ( to see beyond it. Lexer.Lex(); // Eat the '('. if (Lexer.is(asmtok::Register) || Lexer.is(asmtok::Comma)) { // Nothing to do here, fall into the code below with the '(' part of the // memory operand consumed. } else { // FIXME: Call ParseParenExpression with the leading ( consumed. return TokError("FIXME: Paren expr not implemented yet!"); } } // If we reached here, then we just ate the ( of the memory operand. Process // the rest of the memory operand. unsigned BaseReg = 0, ScaleReg = 0, Scale = 0; if (Lexer.is(asmtok::Register)) { BaseReg = 123; // FIXME: decode reg # Lexer.Lex(); // eat the register. } if (Lexer.is(asmtok::Comma)) { Lexer.Lex(); // eat the comma. if (Lexer.is(asmtok::Register)) { ScaleReg = 123; // FIXME: decode reg # Lexer.Lex(); // eat the register. Scale = 1; // If not specified, the scale defaults to 1. } if (Lexer.is(asmtok::Comma)) { Lexer.Lex(); // eat the comma. // If present, get and validate scale amount. if (Lexer.is(asmtok::IntVal)) { int64_t ScaleVal = Lexer.getCurIntVal(); if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8) return TokError("scale factor in address must be 1, 2, 4 or 8"); Lexer.Lex(); // eat the scale. Scale = (unsigned)ScaleVal; } } } // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. if (Lexer.isNot(asmtok::RParen)) return TokError("unexpected token in memory operand"); Lexer.Lex(); // Eat the ')'. Op = X86Operand::CreateMem(SegReg, Disp, BaseReg, Scale, ScaleReg); return false; } /// ParseExpression - Parse an expression and return it. /// FIXME: This should handle real expressions, we do something trivial for now. bool AsmParser::ParseExpression(int64_t &Res) { switch (Lexer.getKind()) { default: return TokError("unknown token in expression"); case asmtok::Identifier: // This is a label, this should be parsed as part of an expression, to // handle things like LFOO+4 Res = 0; // FIXME. Lexer.Lex(); // Eat identifier. return false; case asmtok::IntVal: Res = Lexer.getCurIntVal(); Lexer.Lex(); // Eat identifier. return false; } } /// ParseStatement: /// ::= EndOfStatement /// ::= Label* Directive ...Operands... EndOfStatement /// ::= Label* Identifier OperandList* EndOfStatement bool AsmParser::ParseStatement() { switch (Lexer.getKind()) { default: return TokError("unexpected token at start of statement"); case asmtok::EndOfStatement: Lexer.Lex(); return false; case asmtok::Identifier: break; // TODO: Recurse on local labels etc. } // If we have an identifier, handle it as the key symbol. SMLoc IDLoc = Lexer.getLoc(); std::string IDVal = Lexer.getCurStrVal(); // Consume the identifier, see what is after it. if (Lexer.Lex() == asmtok::Colon) { // identifier ':' -> Label. Lexer.Lex(); return ParseStatement(); } // Otherwise, we have a normal instruction or directive. if (IDVal[0] == '.') { Lexer.PrintMessage(IDLoc, "warning: ignoring directive for now"); EatToEndOfStatement(); return false; } // If it's an instruction, parse an operand list. std::vector Operands; // Read the first operand, if present. Note that we require a newline at the // end of file, so we don't have to worry about Eof here. if (Lexer.isNot(asmtok::EndOfStatement)) { X86Operand Op; if (ParseX86Operand(Op)) return true; Operands.push_back(Op); } while (Lexer.is(asmtok::Comma)) { Lexer.Lex(); // Eat the comma. // Parse and remember the operand. X86Operand Op; if (ParseX86Operand(Op)) return true; Operands.push_back(Op); } if (Lexer.isNot(asmtok::EndOfStatement)) return TokError("unexpected token in operand list"); // Eat the end of statement marker. Lexer.Lex(); // Instruction is good, process it. outs() << "Found instruction: " << IDVal << " with " << Operands.size() << " operands.\n"; // Skip to end of line for now. return false; }