//===-- X86ISelPattern.cpp - A pattern matching inst selector for X86 -----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for X86. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrBuilder.h" #include "X86RegisterInfo.h" #include "llvm/Constants.h" // FIXME: REMOVE #include "llvm/Function.h" #include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // X86TargetLowering - X86 Implementation of the TargetLowering interface namespace { class X86TargetLowering : public TargetLowering { int VarArgsFrameIndex; // FrameIndex for start of varargs area. int ReturnAddrIndex; // FrameIndex for return slot. public: X86TargetLowering(TargetMachine &TM) : TargetLowering(TM) { // Set up the TargetLowering object. addRegisterClass(MVT::i8, X86::R8RegisterClass); addRegisterClass(MVT::i16, X86::R16RegisterClass); addRegisterClass(MVT::i32, X86::R32RegisterClass); addRegisterClass(MVT::f64, X86::RFPRegisterClass); // FIXME: Eliminate these two classes when legalize can handle promotions // well. addRegisterClass(MVT::i1, X86::R8RegisterClass); addRegisterClass(MVT::f32, X86::RFPRegisterClass); computeRegisterProperties(); setOperationUnsupported(ISD::MEMMOVE, MVT::Other); setOperationUnsupported(ISD::MUL, MVT::i8); setOperationUnsupported(ISD::SELECT, MVT::i1); setOperationUnsupported(ISD::SELECT, MVT::i8); addLegalFPImmediate(+0.0); // FLD0 addLegalFPImmediate(+1.0); // FLD1 addLegalFPImmediate(-0.0); // FLD0/FCHS addLegalFPImmediate(-1.0); // FLD1/FCHS } /// LowerArguments - This hook must be implemented to indicate how we should /// lower the arguments for the specified function, into the specified DAG. virtual std::vector LowerArguments(Function &F, SelectionDAG &DAG); /// LowerCallTo - This hook lowers an abstract call to a function into an /// actual call. virtual std::pair LowerCallTo(SDOperand Chain, const Type *RetTy, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); virtual std::pair LowerVAStart(SDOperand Chain, SelectionDAG &DAG); virtual std::pair LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, const Type *ArgTy, SelectionDAG &DAG); virtual std::pair LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, SelectionDAG &DAG); }; } std::vector X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { std::vector ArgValues; // Add DAG nodes to load the arguments... On entry to a function on the X86, // the stack frame looks like this: // // [ESP] -- return address // [ESP + 4] -- first argument (leftmost lexically) // [ESP + 8] -- second argument, if first argument is four bytes in size // ... // MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I) { MVT::ValueType ObjectVT = getValueType(I->getType()); unsigned ArgIncrement = 4; unsigned ObjSize; switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: ObjSize = 1; break; case MVT::i16: ObjSize = 2; break; case MVT::i32: ObjSize = 4; break; case MVT::i64: ObjSize = ArgIncrement = 8; break; case MVT::f32: ObjSize = 4; break; case MVT::f64: ObjSize = ArgIncrement = 8; break; } // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); // Create the SelectionDAG nodes corresponding to a load from this parameter SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); // Don't codegen dead arguments. FIXME: remove this check when we can nuke // dead loads. SDOperand ArgValue; if (!I->use_empty()) ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN); else { if (MVT::isInteger(ObjectVT)) ArgValue = DAG.getConstant(0, ObjectVT); else ArgValue = DAG.getConstantFP(0, ObjectVT); } ArgValues.push_back(ArgValue); ArgOffset += ArgIncrement; // Move on to the next argument... } // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (F.isVarArg()) VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); ReturnAddrIndex = 0; // No return address slot generated yet. return ArgValues; } std::pair X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { // Count how many bytes are to be pushed on the stack. unsigned NumBytes = 0; if (Args.empty()) { // Save zero bytes. Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain, DAG.getConstant(0, getPointerTy())); } else { for (unsigned i = 0, e = Args.size(); i != e; ++i) switch (getValueType(Args[i].second)) { default: assert(0 && "Unknown value type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::f32: NumBytes += 4; break; case MVT::i64: case MVT::f64: NumBytes += 8; break; } Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); // Arguments go on the stack in reverse order, as specified by the ABI. unsigned ArgOffset = 0; SDOperand StackPtr = DAG.getCopyFromReg(X86::ESP, MVT::i32); for (unsigned i = 0, e = Args.size(); i != e; ++i) { unsigned ArgReg; SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); switch (getValueType(Args[i].second)) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i1: case MVT::i8: case MVT::i16: // Promote the integer to 32 bits. If the input type is signed use a // sign extend, otherwise use a zero extend. if (Args[i].second->isSigned()) Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); else Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); // FALL THROUGH case MVT::i32: case MVT::f32: // FIXME: Note that all of these stores are independent of each other. Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff); ArgOffset += 4; break; case MVT::i64: case MVT::f64: // FIXME: Note that all of these stores are independent of each other. Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff); ArgOffset += 8; break; } } } std::vector RetVals; MVT::ValueType RetTyVT = getValueType(RetTy); if (RetTyVT != MVT::isVoid) RetVals.push_back(RetTyVT); RetVals.push_back(MVT::Other); SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain, Callee), 0); Chain = TheCall.getValue(RetTyVT != MVT::isVoid); Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); return std::make_pair(TheCall, Chain); } std::pair X86TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) { // vastart just returns the address of the VarArgsFrameIndex slot. return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32), Chain); } std::pair X86TargetLowering:: LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, const Type *ArgTy, SelectionDAG &DAG) { MVT::ValueType ArgVT = getValueType(ArgTy); SDOperand Result; if (!isVANext) { Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList); } else { unsigned Amt; if (ArgVT == MVT::i32) Amt = 4; else { assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && "Other types should have been promoted for varargs!"); Amt = 8; } Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList, DAG.getConstant(Amt, VAList.getValueType())); } return std::make_pair(Result, Chain); } std::pair X86TargetLowering:: LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, SelectionDAG &DAG) { SDOperand Result; if (Depth) // Depths > 0 not supported yet! Result = DAG.getConstant(0, getPointerTy()); else { if (ReturnAddrIndex == 0) { // Set up a frame object for the return address. MachineFunction &MF = DAG.getMachineFunction(); ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); } SDOperand RetAddrFI = DAG.getFrameIndex(ReturnAddrIndex, MVT::i32); if (!isFrameAddress) // Just load the return address Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI); else Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI, DAG.getConstant(4, MVT::i32)); } return std::make_pair(Result, Chain); } namespace { Statistic<> NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); //===--------------------------------------------------------------------===// /// ISel - X86 specific code to select X86 machine instructions for /// SelectionDAG operations. /// class ISel : public SelectionDAGISel { /// ContainsFPCode - Every instruction we select that uses or defines a FP /// register should set this to true. bool ContainsFPCode; /// X86Lowering - This object fully describes how to lower LLVM code to an /// X86-specific SelectionDAG. X86TargetLowering X86Lowering; /// RegPressureMap - This keeps an approximate count of the number of /// registers required to evaluate each node in the graph. std::map RegPressureMap; /// ExprMap - As shared expressions are codegen'd, we keep track of which /// vreg the value is produced in, so we only emit one copy of each compiled /// tree. std::map ExprMap; std::set LoweredTokens; public: ISel(TargetMachine &TM) : SelectionDAGISel(X86Lowering), X86Lowering(TM) { } unsigned getRegPressure(SDOperand O) { return RegPressureMap[O.Val]; } unsigned ComputeRegPressure(SDOperand O); /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) { // While we're doing this, keep track of whether we see any FP code for // FP_REG_KILL insertion. ContainsFPCode = false; // Compute the RegPressureMap, which is an approximation for the number of // registers required to compute each node. ComputeRegPressure(DAG.getRoot()); //DAG.viewGraph(); // Codegen the basic block. Select(DAG.getRoot()); // Insert FP_REG_KILL instructions into basic blocks that need them. This // only occurs due to the floating point stackifier not being aggressive // enough to handle arbitrary global stackification. // // Currently we insert an FP_REG_KILL instruction into each block that // uses or defines a floating point virtual register. // // When the global register allocators (like linear scan) finally update // live variable analysis, we can keep floating point values in registers // across basic blocks. This will be a huge win, but we are waiting on // the global allocators before we can do this. // if (ContainsFPCode && BB->succ_size()) { BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); ++NumFPKill; } // Clear state used for selection. ExprMap.clear(); LoweredTokens.clear(); RegPressureMap.clear(); } bool isFoldableLoad(SDOperand Op); void EmitFoldedLoad(SDOperand Op, X86AddressMode &AM); void EmitCMP(SDOperand LHS, SDOperand RHS); bool EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, SDOperand Cond); void EmitSelectCC(SDOperand Cond, MVT::ValueType SVT, unsigned RTrue, unsigned RFalse, unsigned RDest); unsigned SelectExpr(SDOperand N); bool SelectAddress(SDOperand N, X86AddressMode &AM); void Select(SDOperand N); }; } // ComputeRegPressure - Compute the RegPressureMap, which is an approximation // for the number of registers required to compute each node. This is basically // computing a generalized form of the Sethi-Ullman number for each node. unsigned ISel::ComputeRegPressure(SDOperand O) { SDNode *N = O.Val; unsigned &Result = RegPressureMap[N]; if (Result) return Result; // FIXME: Should operations like CALL (which clobber lots o regs) have a // higher fixed cost?? if (N->getNumOperands() == 0) { Result = 1; } else { unsigned MaxRegUse = 0; unsigned NumExtraMaxRegUsers = 0; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { unsigned Regs; if (N->getOperand(i).getOpcode() == ISD::Constant) Regs = 0; else Regs = ComputeRegPressure(N->getOperand(i)); if (Regs > MaxRegUse) { MaxRegUse = Regs; NumExtraMaxRegUsers = 0; } else if (Regs == MaxRegUse && N->getOperand(i).getValueType() != MVT::Other) { ++NumExtraMaxRegUsers; } } Result = MaxRegUse+NumExtraMaxRegUsers; } std::cerr << " WEIGHT: " << Result << " "; N->dump(); std::cerr << "\n"; return Result; } /// SelectAddress - Add the specified node to the specified addressing mode, /// returning true if it cannot be done. bool ISel::SelectAddress(SDOperand N, X86AddressMode &AM) { switch (N.getOpcode()) { default: break; case ISD::FrameIndex: if (AM.BaseType == X86AddressMode::RegBase && AM.Base.Reg == 0) { AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = cast(N)->getIndex(); return false; } break; case ISD::GlobalAddress: if (AM.GV == 0) { AM.GV = cast(N)->getGlobal(); return false; } break; case ISD::Constant: AM.Disp += cast(N)->getValue(); return false; case ISD::SHL: if (AM.IndexReg == 0 || AM.Scale == 1) if (ConstantSDNode *CN = dyn_cast(N.Val->getOperand(1))) { unsigned Val = CN->getValue(); if (Val == 1 || Val == 2 || Val == 3) { AM.Scale = 1 << Val; SDOperand ShVal = N.Val->getOperand(0); // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (ShVal.Val->getOpcode() == ISD::ADD && isa(ShVal.Val->getOperand(1))) { AM.IndexReg = SelectExpr(ShVal.Val->getOperand(0)); ConstantSDNode *AddVal = cast(ShVal.Val->getOperand(1)); AM.Disp += AddVal->getValue() << Val; } else { AM.IndexReg = SelectExpr(ShVal); } return false; } } break; case ISD::MUL: // X*[3,5,9] -> X+X*[2,4,8] if (AM.IndexReg == 0 && AM.BaseType == X86AddressMode::RegBase && AM.Base.Reg == 0) if (ConstantSDNode *CN = dyn_cast(N.Val->getOperand(1))) if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) { AM.Scale = unsigned(CN->getValue())-1; SDOperand MulVal = N.Val->getOperand(0); unsigned Reg; // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (MulVal.Val->getOpcode() == ISD::ADD && isa(MulVal.Val->getOperand(1))) { Reg = SelectExpr(MulVal.Val->getOperand(0)); ConstantSDNode *AddVal = cast(MulVal.Val->getOperand(1)); AM.Disp += AddVal->getValue() * CN->getValue(); } else { Reg = SelectExpr(N.Val->getOperand(0)); } AM.IndexReg = AM.Base.Reg = Reg; return false; } break; case ISD::ADD: { X86AddressMode Backup = AM; if (!SelectAddress(N.Val->getOperand(0), AM) && !SelectAddress(N.Val->getOperand(1), AM)) return false; AM = Backup; break; } } // Is the base register already occupied? if (AM.BaseType != X86AddressMode::RegBase || AM.Base.Reg) { // If so, check to see if the scale index register is set. if (AM.IndexReg == 0) { AM.IndexReg = SelectExpr(N); AM.Scale = 1; return false; } // Otherwise, we cannot select it. return true; } // Default, generate it as a register. AM.BaseType = X86AddressMode::RegBase; AM.Base.Reg = SelectExpr(N); return false; } /// Emit2SetCCsAndLogical - Emit the following sequence of instructions, /// assuming that the temporary registers are in the 8-bit register class. /// /// Tmp1 = setcc1 /// Tmp2 = setcc2 /// DestReg = logicalop Tmp1, Tmp2 /// static void Emit2SetCCsAndLogical(MachineBasicBlock *BB, unsigned SetCC1, unsigned SetCC2, unsigned LogicalOp, unsigned DestReg) { SSARegMap *RegMap = BB->getParent()->getSSARegMap(); unsigned Tmp1 = RegMap->createVirtualRegister(X86::R8RegisterClass); unsigned Tmp2 = RegMap->createVirtualRegister(X86::R8RegisterClass); BuildMI(BB, SetCC1, 0, Tmp1); BuildMI(BB, SetCC2, 0, Tmp2); BuildMI(BB, LogicalOp, 2, DestReg).addReg(Tmp1).addReg(Tmp2); } /// EmitSetCC - Emit the code to set the specified 8-bit register to 1 if the /// condition codes match the specified SetCCOpcode. Note that some conditions /// require multiple instructions to generate the correct value. static void EmitSetCC(MachineBasicBlock *BB, unsigned DestReg, ISD::CondCode SetCCOpcode, bool isFP) { unsigned Opc; if (!isFP) { switch (SetCCOpcode) { default: assert(0 && "Illegal integer SetCC!"); case ISD::SETEQ: Opc = X86::SETEr; break; case ISD::SETGT: Opc = X86::SETGr; break; case ISD::SETGE: Opc = X86::SETGEr; break; case ISD::SETLT: Opc = X86::SETLr; break; case ISD::SETLE: Opc = X86::SETLEr; break; case ISD::SETNE: Opc = X86::SETNEr; break; case ISD::SETULT: Opc = X86::SETBr; break; case ISD::SETUGT: Opc = X86::SETAr; break; case ISD::SETULE: Opc = X86::SETBEr; break; case ISD::SETUGE: Opc = X86::SETAEr; break; } } else { // On a floating point condition, the flags are set as follows: // ZF PF CF op // 0 | 0 | 0 | X > Y // 0 | 0 | 1 | X < Y // 1 | 0 | 0 | X == Y // 1 | 1 | 1 | unordered // switch (SetCCOpcode) { default: assert(0 && "Invalid FP setcc!"); case ISD::SETUEQ: case ISD::SETEQ: Opc = X86::SETEr; // True if ZF = 1 break; case ISD::SETOGT: case ISD::SETGT: Opc = X86::SETAr; // True if CF = 0 and ZF = 0 break; case ISD::SETOGE: case ISD::SETGE: Opc = X86::SETAEr; // True if CF = 0 break; case ISD::SETULT: case ISD::SETLT: Opc = X86::SETBr; // True if CF = 1 break; case ISD::SETULE: case ISD::SETLE: Opc = X86::SETBEr; // True if CF = 1 or ZF = 1 break; case ISD::SETONE: case ISD::SETNE: Opc = X86::SETNEr; // True if ZF = 0 break; case ISD::SETUO: Opc = X86::SETPr; // True if PF = 1 break; case ISD::SETO: Opc = X86::SETNPr; // True if PF = 0 break; case ISD::SETOEQ: // !PF & ZF Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETEr, X86::AND8rr, DestReg); return; case ISD::SETOLT: // !PF & CF Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBr, X86::AND8rr, DestReg); return; case ISD::SETOLE: // !PF & (CF || ZF) Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBEr, X86::AND8rr, DestReg); return; case ISD::SETUGT: // PF | (!ZF & !CF) Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAr, X86::OR8rr, DestReg); return; case ISD::SETUGE: // PF | !CF Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAEr, X86::OR8rr, DestReg); return; case ISD::SETUNE: // PF | !ZF Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETNEr, X86::OR8rr, DestReg); return; } } BuildMI(BB, Opc, 0, DestReg); } /// EmitBranchCC - Emit code into BB that arranges for control to transfer to /// the Dest block if the Cond condition is true. If we cannot fold this /// condition into the branch, return true. /// bool ISel::EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, SDOperand Cond) { // FIXME: Evaluate whether it would be good to emit code like (X < Y) | (A > // B) using two conditional branches instead of one condbr, two setcc's, and // an or. if ((Cond.getOpcode() == ISD::OR || Cond.getOpcode() == ISD::AND) && Cond.Val->hasOneUse()) { // And and or set the flags for us, so there is no need to emit a TST of the // result. It is only safe to do this if there is only a single use of the // AND/OR though, otherwise we don't know it will be emitted here. Select(Chain); SelectExpr(Cond); BuildMI(BB, X86::JNE, 1).addMBB(Dest); return false; } // Codegen br not C -> JE. if (Cond.getOpcode() == ISD::XOR) if (ConstantSDNode *NC = dyn_cast(Cond.Val->getOperand(1))) if (NC->isAllOnesValue()) { unsigned CondR; if (getRegPressure(Chain) > getRegPressure(Cond)) { Select(Chain); CondR = SelectExpr(Cond.Val->getOperand(0)); } else { CondR = SelectExpr(Cond.Val->getOperand(0)); Select(Chain); } BuildMI(BB, X86::TEST8rr, 2).addReg(CondR).addReg(CondR); BuildMI(BB, X86::JE, 1).addMBB(Dest); return false; } SetCCSDNode *SetCC = dyn_cast(Cond); if (SetCC == 0) return true; // Can only handle simple setcc's so far. unsigned Opc; // Handle integer conditions first. if (MVT::isInteger(SetCC->getOperand(0).getValueType())) { switch (SetCC->getCondition()) { default: assert(0 && "Illegal integer SetCC!"); case ISD::SETEQ: Opc = X86::JE; break; case ISD::SETGT: Opc = X86::JG; break; case ISD::SETGE: Opc = X86::JGE; break; case ISD::SETLT: Opc = X86::JL; break; case ISD::SETLE: Opc = X86::JLE; break; case ISD::SETNE: Opc = X86::JNE; break; case ISD::SETULT: Opc = X86::JB; break; case ISD::SETUGT: Opc = X86::JA; break; case ISD::SETULE: Opc = X86::JBE; break; case ISD::SETUGE: Opc = X86::JAE; break; } Select(Chain); EmitCMP(SetCC->getOperand(0), SetCC->getOperand(1)); BuildMI(BB, Opc, 1).addMBB(Dest); return false; } unsigned Opc2 = 0; // Second branch if needed. // On a floating point condition, the flags are set as follows: // ZF PF CF op // 0 | 0 | 0 | X > Y // 0 | 0 | 1 | X < Y // 1 | 0 | 0 | X == Y // 1 | 1 | 1 | unordered // switch (SetCC->getCondition()) { default: assert(0 && "Invalid FP setcc!"); case ISD::SETUEQ: case ISD::SETEQ: Opc = X86::JE; break; // True if ZF = 1 case ISD::SETOGT: case ISD::SETGT: Opc = X86::JA; break; // True if CF = 0 and ZF = 0 case ISD::SETOGE: case ISD::SETGE: Opc = X86::JAE; break; // True if CF = 0 case ISD::SETULT: case ISD::SETLT: Opc = X86::JB; break; // True if CF = 1 case ISD::SETULE: case ISD::SETLE: Opc = X86::JBE; break; // True if CF = 1 or ZF = 1 case ISD::SETONE: case ISD::SETNE: Opc = X86::JNE; break; // True if ZF = 0 case ISD::SETUO: Opc = X86::JP; break; // True if PF = 1 case ISD::SETO: Opc = X86::JNP; break; // True if PF = 0 case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0) Opc = X86::JA; // ZF = 0 & CF = 0 Opc2 = X86::JP; // PF = 1 break; case ISD::SETUGE: // PF = 1 | CF = 0 Opc = X86::JAE; // CF = 0 Opc2 = X86::JP; // PF = 1 break; case ISD::SETUNE: // PF = 1 | ZF = 0 Opc = X86::JNE; // ZF = 0 Opc2 = X86::JP; // PF = 1 break; case ISD::SETOEQ: // PF = 0 & ZF = 1 //X86::JNP, X86::JE //X86::AND8rr return true; // FIXME: Emit more efficient code for this branch. case ISD::SETOLT: // PF = 0 & CF = 1 //X86::JNP, X86::JB //X86::AND8rr return true; // FIXME: Emit more efficient code for this branch. case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1) //X86::JNP, X86::JBE //X86::AND8rr return true; // FIXME: Emit more efficient code for this branch. } Select(Chain); EmitCMP(SetCC->getOperand(0), SetCC->getOperand(1)); BuildMI(BB, Opc, 1).addMBB(Dest); if (Opc2) BuildMI(BB, Opc2, 1).addMBB(Dest); return false; } /// EmitSelectCC - Emit code into BB that performs a select operation between /// the two registers RTrue and RFalse, generating a result into RDest. Return /// true if the fold cannot be performed. /// void ISel::EmitSelectCC(SDOperand Cond, MVT::ValueType SVT, unsigned RTrue, unsigned RFalse, unsigned RDest) { enum Condition { EQ, NE, LT, LE, GT, GE, B, BE, A, AE, P, NP, NOT_SET } CondCode = NOT_SET; static const unsigned CMOVTAB16[] = { X86::CMOVE16rr, X86::CMOVNE16rr, X86::CMOVL16rr, X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVGE16rr, X86::CMOVB16rr, X86::CMOVBE16rr, X86::CMOVA16rr, X86::CMOVAE16rr, X86::CMOVP16rr, X86::CMOVNP16rr, }; static const unsigned CMOVTAB32[] = { X86::CMOVE32rr, X86::CMOVNE32rr, X86::CMOVL32rr, X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVGE32rr, X86::CMOVB32rr, X86::CMOVBE32rr, X86::CMOVA32rr, X86::CMOVAE32rr, X86::CMOVP32rr, X86::CMOVNP32rr, }; static const unsigned CMOVTABFP[] = { X86::FCMOVE , X86::FCMOVNE, /*missing*/0, /*missing*/0, /*missing*/0, /*missing*/0, X86::FCMOVB , X86::FCMOVBE, X86::FCMOVA , X86::FCMOVAE, X86::FCMOVP , X86::FCMOVNP }; if (SetCCSDNode *SetCC = dyn_cast(Cond)) { if (MVT::isInteger(SetCC->getOperand(0).getValueType())) { switch (SetCC->getCondition()) { default: assert(0 && "Unknown integer comparison!"); case ISD::SETEQ: CondCode = EQ; break; case ISD::SETGT: CondCode = GT; break; case ISD::SETGE: CondCode = GE; break; case ISD::SETLT: CondCode = LT; break; case ISD::SETLE: CondCode = LE; break; case ISD::SETNE: CondCode = NE; break; case ISD::SETULT: CondCode = B; break; case ISD::SETUGT: CondCode = A; break; case ISD::SETULE: CondCode = BE; break; case ISD::SETUGE: CondCode = AE; break; } } else { // On a floating point condition, the flags are set as follows: // ZF PF CF op // 0 | 0 | 0 | X > Y // 0 | 0 | 1 | X < Y // 1 | 0 | 0 | X == Y // 1 | 1 | 1 | unordered // switch (SetCC->getCondition()) { default: assert(0 && "Unknown FP comparison!"); case ISD::SETUEQ: case ISD::SETEQ: CondCode = EQ; break; // True if ZF = 1 case ISD::SETOGT: case ISD::SETGT: CondCode = A; break; // True if CF = 0 and ZF = 0 case ISD::SETOGE: case ISD::SETGE: CondCode = AE; break; // True if CF = 0 case ISD::SETULT: case ISD::SETLT: CondCode = B; break; // True if CF = 1 case ISD::SETULE: case ISD::SETLE: CondCode = BE; break; // True if CF = 1 or ZF = 1 case ISD::SETONE: case ISD::SETNE: CondCode = NE; break; // True if ZF = 0 case ISD::SETUO: CondCode = P; break; // True if PF = 1 case ISD::SETO: CondCode = NP; break; // True if PF = 0 case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0) case ISD::SETUGE: // PF = 1 | CF = 0 case ISD::SETUNE: // PF = 1 | ZF = 0 case ISD::SETOEQ: // PF = 0 & ZF = 1 case ISD::SETOLT: // PF = 0 & CF = 1 case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1) // We cannot emit this comparison as a single cmov. break; } } } unsigned Opc = 0; if (CondCode != NOT_SET) { switch (SVT) { default: assert(0 && "Cannot select this type!"); case MVT::i16: Opc = CMOVTAB16[CondCode]; break; case MVT::i32: Opc = CMOVTAB32[CondCode]; break; case MVT::f32: case MVT::f64: Opc = CMOVTABFP[CondCode]; break; } } // Finally, if we weren't able to fold this, just emit the condition and test // it. if (CondCode == NOT_SET || Opc == 0) { // Get the condition into the zero flag. unsigned CondReg = SelectExpr(Cond); BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); switch (SVT) { default: assert(0 && "Cannot select this type!"); case MVT::i16: Opc = X86::CMOVE16rr; break; case MVT::i32: Opc = X86::CMOVE32rr; break; case MVT::f32: case MVT::f64: Opc = X86::FCMOVE; break; } } else { // FIXME: CMP R, 0 -> TEST R, R EmitCMP(Cond.getOperand(0), Cond.getOperand(1)); std::swap(RTrue, RFalse); } BuildMI(BB, Opc, 2, RDest).addReg(RTrue).addReg(RFalse); } void ISel::EmitCMP(SDOperand LHS, SDOperand RHS) { unsigned Opc; if (ConstantSDNode *CN = dyn_cast(RHS)) { Opc = 0; switch (RHS.getValueType()) { default: break; case MVT::i1: case MVT::i8: Opc = X86::CMP8ri; break; case MVT::i16: Opc = X86::CMP16ri; break; case MVT::i32: Opc = X86::CMP32ri; break; } if (Opc) { unsigned Tmp1 = SelectExpr(LHS); BuildMI(BB, Opc, 2).addReg(Tmp1).addImm(CN->getValue()); return; } } switch (LHS.getValueType()) { default: assert(0 && "Cannot compare this value!"); case MVT::i1: case MVT::i8: Opc = X86::CMP8rr; break; case MVT::i16: Opc = X86::CMP16rr; break; case MVT::i32: Opc = X86::CMP32rr; break; case MVT::f32: case MVT::f64: Opc = X86::FUCOMIr; break; } unsigned Tmp1, Tmp2; if (getRegPressure(LHS) > getRegPressure(RHS)) { Tmp1 = SelectExpr(LHS); Tmp2 = SelectExpr(RHS); } else { Tmp2 = SelectExpr(RHS); Tmp1 = SelectExpr(LHS); } BuildMI(BB, Opc, 2).addReg(Tmp1).addReg(Tmp2); } /// isFoldableLoad - Return true if this is a load instruction that can safely /// be folded into an operation that uses it. bool ISel::isFoldableLoad(SDOperand Op) { if (Op.getOpcode() != ISD::LOAD || // FIXME: currently can't fold constant pool indexes. isa(Op.getOperand(1))) return false; // If this load has already been emitted, we clearly can't fold it. if (ExprMap.count(Op)) return false; return Op.Val->use_size() == 2; } /// EmitFoldedLoad - Ensure that the arguments of the load are code generated, /// and compute the address being loaded into AM. void ISel::EmitFoldedLoad(SDOperand Op, X86AddressMode &AM) { SDOperand Chain = Op.getOperand(0); SDOperand Address = Op.getOperand(1); if (getRegPressure(Chain) > getRegPressure(Address)) { Select(Chain); SelectAddress(Address, AM); } else { SelectAddress(Address, AM); Select(Chain); } // The chain for this load is now lowered. LoweredTokens.insert(SDOperand(Op.Val, 1)); ExprMap[SDOperand(Op.Val, 1)] = 1; } unsigned ISel::SelectExpr(SDOperand N) { unsigned Result; unsigned Tmp1, Tmp2, Tmp3; unsigned Opc = 0; SDNode *Node = N.Val; SDOperand Op0, Op1; if (Node->getOpcode() == ISD::CopyFromReg) // Just use the specified register as our input. return dyn_cast(Node)->getReg(); unsigned &Reg = ExprMap[N]; if (Reg) return Reg; if (N.getOpcode() != ISD::CALL) Reg = Result = (N.getValueType() != MVT::Other) ? MakeReg(N.getValueType()) : 1; else { // If this is a call instruction, make sure to prepare ALL of the result // values as well as the chain. if (Node->getNumValues() == 1) Reg = Result = 1; // Void call, just a chain. else { Result = MakeReg(Node->getValueType(0)); ExprMap[N.getValue(0)] = Result; for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i) ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; } } switch (N.getOpcode()) { default: Node->dump(); assert(0 && "Node not handled!\n"); case ISD::FrameIndex: Tmp1 = cast(N)->getIndex(); addFrameReference(BuildMI(BB, X86::LEA32r, 4, Result), (int)Tmp1); return Result; case ISD::ConstantPool: Tmp1 = cast(N)->getIndex(); addConstantPoolReference(BuildMI(BB, X86::LEA32r, 4, Result), Tmp1); return Result; case ISD::ConstantFP: ContainsFPCode = true; Tmp1 = Result; // Intermediate Register if (cast(N)->getValue() < 0.0 || cast(N)->isExactlyValue(-0.0)) Tmp1 = MakeReg(MVT::f64); if (cast(N)->isExactlyValue(+0.0) || cast(N)->isExactlyValue(-0.0)) BuildMI(BB, X86::FLD0, 0, Tmp1); else if (cast(N)->isExactlyValue(+1.0) || cast(N)->isExactlyValue(-1.0)) BuildMI(BB, X86::FLD1, 0, Tmp1); else assert(0 && "Unexpected constant!"); if (Tmp1 != Result) BuildMI(BB, X86::FCHS, 1, Result).addReg(Tmp1); return Result; case ISD::Constant: switch (N.getValueType()) { default: assert(0 && "Cannot use constants of this type!"); case MVT::i1: case MVT::i8: Opc = X86::MOV8ri; break; case MVT::i16: Opc = X86::MOV16ri; break; case MVT::i32: Opc = X86::MOV32ri; break; } BuildMI(BB, Opc, 1,Result).addImm(cast(N)->getValue()); return Result; case ISD::GlobalAddress: { GlobalValue *GV = cast(N)->getGlobal(); BuildMI(BB, X86::MOV32ri, 1, Result).addGlobalAddress(GV); return Result; } case ISD::ExternalSymbol: { const char *Sym = cast(N)->getSymbol(); BuildMI(BB, X86::MOV32ri, 1, Result).addExternalSymbol(Sym); return Result; } case ISD::FP_EXTEND: Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, X86::FpMOV, 1, Result).addReg(Tmp1); return Result; case ISD::ZERO_EXTEND: { int DestIs16 = N.getValueType() == MVT::i16; int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16; Tmp1 = SelectExpr(N.getOperand(0)); // FIXME: This hack is here for zero extension casts from bool to i8. This // would not be needed if bools were promoted by Legalize. if (N.getValueType() == MVT::i8) { BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1); return Result; } static const unsigned Opc[3] = { X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOVZX16rr8 }; BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1); return Result; } case ISD::SIGN_EXTEND: { int DestIs16 = N.getValueType() == MVT::i16; int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16; // FIXME: Legalize should promote bools to i8! assert(N.getOperand(0).getValueType() != MVT::i1 && "Sign extend from bool not implemented!"); static const unsigned Opc[3] = { X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOVSX16rr8 }; Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1); return Result; } case ISD::TRUNCATE: // Handle cast of LARGER int to SMALLER int using a move to EAX followed by // a move out of AX or AL. switch (N.getOperand(0).getValueType()) { default: assert(0 && "Unknown truncate!"); case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break; case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break; case MVT::i32: Tmp2 = X86::EAX; Opc = X86::MOV32rr; break; } Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1); switch (N.getValueType()) { default: assert(0 && "Unknown truncate!"); case MVT::i1: case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break; case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break; } BuildMI(BB, Opc, 1, Result).addReg(Tmp2); return Result; case ISD::FP_ROUND: // Truncate from double to float by storing to memory as float, // then reading it back into a register. // Create as stack slot to use. // FIXME: This should automatically be made by the Legalizer! Tmp1 = TLI.getTargetData().getFloatAlignment(); Tmp2 = BB->getParent()->getFrameInfo()->CreateStackObject(4, Tmp1); // Codegen the input. Tmp1 = SelectExpr(N.getOperand(0)); // Emit the store, then the reload. addFrameReference(BuildMI(BB, X86::FST32m, 5), Tmp2).addReg(Tmp1); addFrameReference(BuildMI(BB, X86::FLD32m, 5, Result), Tmp2); return Result; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: { // FIXME: Most of this grunt work should be done by legalize! ContainsFPCode = true; // Promote the integer to a type supported by FLD. We do this because there // are no unsigned FLD instructions, so we must promote an unsigned value to // a larger signed value, then use FLD on the larger value. // MVT::ValueType PromoteType = MVT::Other; MVT::ValueType SrcTy = N.getOperand(0).getValueType(); unsigned PromoteOpcode = 0; unsigned RealDestReg = Result; switch (SrcTy) { case MVT::i1: case MVT::i8: // We don't have the facilities for directly loading byte sized data from // memory (even signed). Promote it to 16 bits. PromoteType = MVT::i16; PromoteOpcode = Node->getOpcode() == ISD::SINT_TO_FP ? X86::MOVSX16rr8 : X86::MOVZX16rr8; break; case MVT::i16: if (Node->getOpcode() == ISD::UINT_TO_FP) { PromoteType = MVT::i32; PromoteOpcode = X86::MOVZX32rr16; } break; default: // Don't fild into the real destination. if (Node->getOpcode() == ISD::UINT_TO_FP) Result = MakeReg(Node->getValueType(0)); break; } Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register if (PromoteType != MVT::Other) { Tmp2 = MakeReg(PromoteType); BuildMI(BB, PromoteOpcode, 1, Tmp2).addReg(Tmp1); SrcTy = PromoteType; Tmp1 = Tmp2; } // Spill the integer to memory and reload it from there. unsigned Size = MVT::getSizeInBits(SrcTy)/8; MachineFunction *F = BB->getParent(); int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); switch (SrcTy) { case MVT::i64: // FIXME: this won't work for cast [u]long to FP addFrameReference(BuildMI(BB, X86::MOV32mr, 5), FrameIdx).addReg(Tmp1); addFrameReference(BuildMI(BB, X86::MOV32mr, 5), FrameIdx, 4).addReg(Tmp1+1); addFrameReference(BuildMI(BB, X86::FILD64m, 5, Result), FrameIdx); break; case MVT::i32: addFrameReference(BuildMI(BB, X86::MOV32mr, 5), FrameIdx).addReg(Tmp1); addFrameReference(BuildMI(BB, X86::FILD32m, 5, Result), FrameIdx); break; case MVT::i16: addFrameReference(BuildMI(BB, X86::MOV16mr, 5), FrameIdx).addReg(Tmp1); addFrameReference(BuildMI(BB, X86::FILD16m, 5, Result), FrameIdx); break; default: break; // No promotion required. } if (Node->getOpcode() == ISD::UINT_TO_FP && SrcTy == MVT::i32) { // If this is a cast from uint -> double, we need to be careful when if // the "sign" bit is set. If so, we don't want to make a negative number, // we want to make a positive number. Emit code to add an offset if the // sign bit is set. // Compute whether the sign bit is set by shifting the reg right 31 bits. unsigned IsNeg = MakeReg(MVT::i32); BuildMI(BB, X86::SHR32ri, 2, IsNeg).addReg(Tmp1).addImm(31); // Create a CP value that has the offset in one word and 0 in the other. static ConstantInt *TheOffset = ConstantUInt::get(Type::ULongTy, 0x4f80000000000000ULL); unsigned CPI = F->getConstantPool()->getConstantPoolIndex(TheOffset); BuildMI(BB, X86::FADD32m, 5, RealDestReg).addReg(Result) .addConstantPoolIndex(CPI).addZImm(4).addReg(IsNeg).addSImm(0); } else if (Node->getOpcode() == ISD::UINT_TO_FP && SrcTy == MVT::i64) { // We need special handling for unsigned 64-bit integer sources. If the // input number has the "sign bit" set, then we loaded it incorrectly as a // negative 64-bit number. In this case, add an offset value. // Emit a test instruction to see if the dynamic input value was signed. BuildMI(BB, X86::TEST32rr, 2).addReg(Tmp1+1).addReg(Tmp1+1); // If the sign bit is set, get a pointer to an offset, otherwise get a // pointer to a zero. MachineConstantPool *CP = F->getConstantPool(); unsigned Zero = MakeReg(MVT::i32); Constant *Null = Constant::getNullValue(Type::UIntTy); addConstantPoolReference(BuildMI(BB, X86::LEA32r, 5, Zero), CP->getConstantPoolIndex(Null)); unsigned Offset = MakeReg(MVT::i32); Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000); addConstantPoolReference(BuildMI(BB, X86::LEA32r, 5, Offset), CP->getConstantPoolIndex(OffsetCst)); unsigned Addr = MakeReg(MVT::i32); BuildMI(BB, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset); // Load the constant for an add. FIXME: this could make an 'fadd' that // reads directly from memory, but we don't support these yet. unsigned ConstReg = MakeReg(MVT::f64); addDirectMem(BuildMI(BB, X86::FLD32m, 4, ConstReg), Addr); BuildMI(BB, X86::FpADD, 2, RealDestReg).addReg(ConstReg).addReg(Result); } return RealDestReg; } case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: { // FIXME: Most of this grunt work should be done by legalize! Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register // Change the floating point control register to use "round towards zero" // mode when truncating to an integer value. // MachineFunction *F = BB->getParent(); int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); // Load the old value of the high byte of the control word... unsigned HighPartOfCW = MakeReg(MVT::i8); addFrameReference(BuildMI(BB, X86::MOV8rm, 4, HighPartOfCW), CWFrameIdx, 1); // Set the high part to be round to zero... addFrameReference(BuildMI(BB, X86::MOV8mi, 5), CWFrameIdx, 1).addImm(12); // Reload the modified control word now... addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); // Restore the memory image of control word to original value addFrameReference(BuildMI(BB, X86::MOV8mr, 5), CWFrameIdx, 1).addReg(HighPartOfCW); // We don't have the facilities for directly storing byte sized data to // memory. Promote it to 16 bits. We also must promote unsigned values to // larger classes because we only have signed FP stores. MVT::ValueType StoreClass = Node->getValueType(0); if (StoreClass == MVT::i8 || Node->getOpcode() == ISD::FP_TO_UINT) switch (StoreClass) { case MVT::i8: StoreClass = MVT::i16; break; case MVT::i16: StoreClass = MVT::i32; break; case MVT::i32: StoreClass = MVT::i64; break; // The following treatment of cLong may not be perfectly right, // but it survives chains of casts of the form // double->ulong->double. case MVT::i64: StoreClass = MVT::i64; break; default: assert(0 && "Unknown store class!"); } // Spill the integer to memory and reload it from there. unsigned Size = MVT::getSizeInBits(StoreClass)/8; int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); switch (StoreClass) { default: assert(0 && "Unknown store class!"); case MVT::i16: addFrameReference(BuildMI(BB, X86::FIST16m, 5), FrameIdx).addReg(Tmp1); break; case MVT::i32: addFrameReference(BuildMI(BB, X86::FIST32m, 5), FrameIdx).addReg(Tmp1); break; case MVT::i64: addFrameReference(BuildMI(BB, X86::FISTP64m, 5), FrameIdx).addReg(Tmp1); break; } switch (Node->getValueType(0)) { default: assert(0 && "Unknown integer type!"); case MVT::i64: // FIXME: this isn't gunna work. addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Result), FrameIdx); addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Result+1), FrameIdx, 4); case MVT::i32: addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Result), FrameIdx); break; case MVT::i16: addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Result), FrameIdx); break; case MVT::i8: addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Result), FrameIdx); break; } // Reload the original control word now. addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); return Result; } case ISD::ADD: Op0 = N.getOperand(0); Op1 = N.getOperand(1); if (isFoldableLoad(Op0)) std::swap(Op0, Op1); if (isFoldableLoad(Op1)) { switch (N.getValueType()) { default: assert(0 && "Cannot add this type!"); case MVT::i1: case MVT::i8: Opc = X86::ADD8rm; break; case MVT::i16: Opc = X86::ADD16rm; break; case MVT::i32: Opc = X86::ADD32rm; break; case MVT::f32: Opc = X86::FADD32m; break; case MVT::f64: Opc = X86::FADD64m; break; } X86AddressMode AM; if (getRegPressure(Op0) > getRegPressure(Op1)) { Tmp1 = SelectExpr(Op0); EmitFoldedLoad(Op1, AM); } else { EmitFoldedLoad(Op1, AM); Tmp1 = SelectExpr(Op0); } addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); return Result; } // See if we can codegen this as an LEA to fold operations together. if (N.getValueType() == MVT::i32) { X86AddressMode AM; if (!SelectAddress(Op0, AM) && !SelectAddress(Op1, AM)) { // If this is not just an add, emit the LEA. For a simple add (like // reg+reg or reg+imm), we just emit an add. It might be a good idea to // leave this as LEA, then peephole it to 'ADD' after two address elim // happens. if (AM.Scale != 1 || AM.BaseType == X86AddressMode::FrameIndexBase || AM.GV || (AM.Base.Reg && AM.IndexReg && AM.Disp)) { addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), AM); return Result; } } } if (ConstantSDNode *CN = dyn_cast(Op1)) { Opc = 0; if (CN->getValue() == 1) { // add X, 1 -> inc X switch (N.getValueType()) { default: assert(0 && "Cannot integer add this type!"); case MVT::i8: Opc = X86::INC8r; break; case MVT::i16: Opc = X86::INC16r; break; case MVT::i32: Opc = X86::INC32r; break; } } else if (CN->isAllOnesValue()) { // add X, -1 -> dec X switch (N.getValueType()) { default: assert(0 && "Cannot integer add this type!"); case MVT::i8: Opc = X86::DEC8r; break; case MVT::i16: Opc = X86::DEC16r; break; case MVT::i32: Opc = X86::DEC32r; break; } } if (Opc) { Tmp1 = SelectExpr(Op0); BuildMI(BB, Opc, 1, Result).addReg(Tmp1); return Result; } switch (N.getValueType()) { default: assert(0 && "Cannot add this type!"); case MVT::i8: Opc = X86::ADD8ri; break; case MVT::i16: Opc = X86::ADD16ri; break; case MVT::i32: Opc = X86::ADD32ri; break; } if (Opc) { Tmp1 = SelectExpr(Op0); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); return Result; } } switch (N.getValueType()) { default: assert(0 && "Cannot add this type!"); case MVT::i8: Opc = X86::ADD8rr; break; case MVT::i16: Opc = X86::ADD16rr; break; case MVT::i32: Opc = X86::ADD32rr; break; case MVT::f32: case MVT::f64: Opc = X86::FpADD; break; } if (getRegPressure(Op0) > getRegPressure(Op1)) { Tmp1 = SelectExpr(Op0); Tmp2 = SelectExpr(Op1); } else { Tmp2 = SelectExpr(Op1); Tmp1 = SelectExpr(Op0); } BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::SUB: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: static const unsigned SUBTab[] = { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0, X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::FSUB32m, X86::FSUB64m, X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB , X86::FpSUB, }; static const unsigned MULTab[] = { 0, X86::IMUL16rri, X86::IMUL32rri, 0, 0, 0, X86::IMUL16rm , X86::IMUL32rm, X86::FMUL32m, X86::FMUL64m, 0, X86::IMUL16rr , X86::IMUL32rr, X86::FpMUL , X86::FpMUL, }; static const unsigned ANDTab[] = { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, 0, X86::AND8rm, X86::AND16rm, X86::AND32rm, 0, 0, X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, 0, }; static const unsigned ORTab[] = { X86::OR8ri, X86::OR16ri, X86::OR32ri, 0, 0, X86::OR8rm, X86::OR16rm, X86::OR32rm, 0, 0, X86::OR8rr, X86::OR16rr, X86::OR32rr, 0, 0, }; static const unsigned XORTab[] = { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, 0, X86::XOR8rm, X86::XOR16rm, X86::XOR32rm, 0, 0, X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, 0, }; Op0 = Node->getOperand(0); Op1 = Node->getOperand(1); if (Node->getOpcode() == ISD::SUB && MVT::isInteger(N.getValueType())) if (ConstantSDNode *CN = dyn_cast(N.getOperand(0))) if (CN->isNullValue()) { // 0 - N -> neg N switch (N.getValueType()) { default: assert(0 && "Cannot sub this type!"); case MVT::i1: case MVT::i8: Opc = X86::NEG8r; break; case MVT::i16: Opc = X86::NEG16r; break; case MVT::i32: Opc = X86::NEG32r; break; } Tmp1 = SelectExpr(N.getOperand(1)); BuildMI(BB, Opc, 1, Result).addReg(Tmp1); return Result; } if (ConstantSDNode *CN = dyn_cast(Op1)) { if (CN->isAllOnesValue() && Node->getOpcode() == ISD::XOR) { switch (N.getValueType()) { default: assert(0 && "Cannot add this type!"); case MVT::i1: case MVT::i8: Opc = X86::NOT8r; break; case MVT::i16: Opc = X86::NOT16r; break; case MVT::i32: Opc = X86::NOT32r; break; } Tmp1 = SelectExpr(Op0); BuildMI(BB, Opc, 1, Result).addReg(Tmp1); return Result; } switch (N.getValueType()) { default: assert(0 && "Cannot xor this type!"); case MVT::i1: case MVT::i8: Opc = 0; break; case MVT::i16: Opc = 1; break; case MVT::i32: Opc = 2; break; } switch (Node->getOpcode()) { default: assert(0 && "Unreachable!"); case ISD::SUB: Opc = SUBTab[Opc]; break; case ISD::MUL: Opc = MULTab[Opc]; break; case ISD::AND: Opc = ANDTab[Opc]; break; case ISD::OR: Opc = ORTab[Opc]; break; case ISD::XOR: Opc = XORTab[Opc]; break; } if (Opc) { // Can't fold MUL:i8 R, imm Tmp1 = SelectExpr(Op0); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); return Result; } } if (isFoldableLoad(Op0)) if (Node->getOpcode() != ISD::SUB) { std::swap(Op0, Op1); } else { // Emit 'reverse' subract, with a memory operand. switch (N.getValueType()) { default: Opc = 0; break; case MVT::f32: Opc = X86::FSUBR32m; break; case MVT::f64: Opc = X86::FSUBR64m; break; } if (Opc) { X86AddressMode AM; if (getRegPressure(Op0) > getRegPressure(Op1)) { EmitFoldedLoad(Op0, AM); Tmp1 = SelectExpr(Op1); } else { Tmp1 = SelectExpr(Op1); EmitFoldedLoad(Op0, AM); } addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); return Result; } } if (isFoldableLoad(Op1)) { switch (N.getValueType()) { default: assert(0 && "Cannot operate on this type!"); case MVT::i1: case MVT::i8: Opc = 5; break; case MVT::i16: Opc = 6; break; case MVT::i32: Opc = 7; break; case MVT::f32: Opc = 8; break; case MVT::f64: Opc = 9; break; } switch (Node->getOpcode()) { default: assert(0 && "Unreachable!"); case ISD::SUB: Opc = SUBTab[Opc]; break; case ISD::MUL: Opc = MULTab[Opc]; break; case ISD::AND: Opc = ANDTab[Opc]; break; case ISD::OR: Opc = ORTab[Opc]; break; case ISD::XOR: Opc = XORTab[Opc]; break; } X86AddressMode AM; if (getRegPressure(Op0) > getRegPressure(Op1)) { Tmp1 = SelectExpr(Op0); EmitFoldedLoad(Op1, AM); } else { EmitFoldedLoad(Op1, AM); Tmp1 = SelectExpr(Op0); } if (Opc) { addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); } else { assert(Node->getOpcode() == ISD::MUL && N.getValueType() == MVT::i8 && "Unexpected situation!"); // Must use the MUL instruction, which forces use of AL. BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); addFullAddress(BuildMI(BB, X86::MUL8m, 1), AM); BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); } return Result; } if (getRegPressure(Op0) > getRegPressure(Op1)) { Tmp1 = SelectExpr(Op0); Tmp2 = SelectExpr(Op1); } else { Tmp2 = SelectExpr(Op1); Tmp1 = SelectExpr(Op0); } switch (N.getValueType()) { default: assert(0 && "Cannot add this type!"); case MVT::i1: case MVT::i8: Opc = 10; break; case MVT::i16: Opc = 11; break; case MVT::i32: Opc = 12; break; case MVT::f32: Opc = 13; break; case MVT::f64: Opc = 14; break; } switch (Node->getOpcode()) { default: assert(0 && "Unreachable!"); case ISD::SUB: Opc = SUBTab[Opc]; break; case ISD::MUL: Opc = MULTab[Opc]; break; case ISD::AND: Opc = ANDTab[Opc]; break; case ISD::OR: Opc = ORTab[Opc]; break; case ISD::XOR: Opc = XORTab[Opc]; break; } if (Opc) { BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); } else { assert(Node->getOpcode() == ISD::MUL && N.getValueType() == MVT::i8 && "Unexpected situation!"); // Must use the MUL instruction, which forces use of AL. BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); BuildMI(BB, X86::MUL8r, 1).addReg(Tmp2); BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); } return Result; case ISD::SELECT: if (N.getValueType() != MVT::i1 && N.getValueType() != MVT::i8) { if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { Tmp2 = SelectExpr(N.getOperand(1)); Tmp3 = SelectExpr(N.getOperand(2)); } else { Tmp3 = SelectExpr(N.getOperand(2)); Tmp2 = SelectExpr(N.getOperand(1)); } EmitSelectCC(N.getOperand(0), N.getValueType(), Tmp2, Tmp3, Result); return Result; } else { // FIXME: This should not be implemented here, it should be in the generic // code! if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { Tmp2 = SelectExpr(CurDAG->getNode(ISD::ZERO_EXTEND, MVT::i16, N.getOperand(1))); Tmp3 = SelectExpr(CurDAG->getNode(ISD::ZERO_EXTEND, MVT::i16, N.getOperand(2))); } else { Tmp3 = SelectExpr(CurDAG->getNode(ISD::ZERO_EXTEND, MVT::i16, N.getOperand(2))); Tmp2 = SelectExpr(CurDAG->getNode(ISD::ZERO_EXTEND, MVT::i16, N.getOperand(1))); } unsigned TmpReg = MakeReg(MVT::i16); EmitSelectCC(N.getOperand(0), MVT::i16, Tmp2, Tmp3, TmpReg); // FIXME: need subregs to do better than this! BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(TmpReg); BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); return Result; } case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: { if (N.getOpcode() == ISD::SDIV) if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { // FIXME: These special cases should be handled by the lowering impl! unsigned RHS = CN->getValue(); bool isNeg = false; if ((int)RHS < 0) { isNeg = true; RHS = -RHS; } if (RHS && (RHS & (RHS-1)) == 0) { // Signed division by power of 2? unsigned Log = log2(RHS); unsigned TmpReg = MakeReg(N.getValueType()); unsigned SAROpc, SHROpc, ADDOpc, NEGOpc; switch (N.getValueType()) { default: assert("Unknown type to signed divide!"); case MVT::i8: SAROpc = X86::SAR8ri; SHROpc = X86::SHR8ri; ADDOpc = X86::ADD8rr; NEGOpc = X86::NEG8r; break; case MVT::i16: SAROpc = X86::SAR16ri; SHROpc = X86::SHR16ri; ADDOpc = X86::ADD16rr; NEGOpc = X86::NEG16r; break; case MVT::i32: SAROpc = X86::SAR32ri; SHROpc = X86::SHR32ri; ADDOpc = X86::ADD32rr; NEGOpc = X86::NEG32r; break; } Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, SAROpc, 2, TmpReg).addReg(Tmp1).addImm(Log-1); unsigned TmpReg2 = MakeReg(N.getValueType()); BuildMI(BB, SHROpc, 2, TmpReg2).addReg(TmpReg).addImm(32-Log); unsigned TmpReg3 = MakeReg(N.getValueType()); BuildMI(BB, ADDOpc, 2, TmpReg3).addReg(Tmp1).addReg(TmpReg2); unsigned TmpReg4 = isNeg ? MakeReg(N.getValueType()) : Result; BuildMI(BB, SAROpc, 2, TmpReg4).addReg(TmpReg3).addImm(Log); if (isNeg) BuildMI(BB, NEGOpc, 1, Result).addReg(TmpReg4); return Result; } } if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); } else { Tmp2 = SelectExpr(N.getOperand(1)); Tmp1 = SelectExpr(N.getOperand(0)); } bool isSigned = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::SREM; bool isDiv = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::UDIV; unsigned LoReg, HiReg, DivOpcode, MovOpcode, ClrOpcode, SExtOpcode; switch (N.getValueType()) { default: assert(0 && "Cannot sdiv this type!"); case MVT::i8: DivOpcode = isSigned ? X86::IDIV8r : X86::DIV8r; LoReg = X86::AL; HiReg = X86::AH; MovOpcode = X86::MOV8rr; ClrOpcode = X86::MOV8ri; SExtOpcode = X86::CBW; break; case MVT::i16: DivOpcode = isSigned ? X86::IDIV16r : X86::DIV16r; LoReg = X86::AX; HiReg = X86::DX; MovOpcode = X86::MOV16rr; ClrOpcode = X86::MOV16ri; SExtOpcode = X86::CWD; break; case MVT::i32: DivOpcode = isSigned ? X86::IDIV32r : X86::DIV32r; LoReg =X86::EAX; HiReg = X86::EDX; MovOpcode = X86::MOV32rr; ClrOpcode = X86::MOV32ri; SExtOpcode = X86::CDQ; break; case MVT::i64: assert(0 && "FIXME: implement i64 DIV/REM libcalls!"); case MVT::f32: case MVT::f64: if (N.getOpcode() == ISD::SDIV) BuildMI(BB, X86::FpDIV, 2, Result).addReg(Tmp1).addReg(Tmp2); else assert(0 && "FIXME: Emit frem libcall to fmod!"); return Result; } // Set up the low part. BuildMI(BB, MovOpcode, 1, LoReg).addReg(Tmp1); if (isSigned) { // Sign extend the low part into the high part. BuildMI(BB, SExtOpcode, 0); } else { // Zero out the high part, effectively zero extending the input. BuildMI(BB, ClrOpcode, 1, HiReg).addImm(0); } // Emit the DIV/IDIV instruction. BuildMI(BB, DivOpcode, 1).addReg(Tmp2); // Get the result of the divide or rem. BuildMI(BB, MovOpcode, 1, Result).addReg(isDiv ? LoReg : HiReg); return Result; } case ISD::SHL: if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { if (CN->getValue() == 1) { // X = SHL Y, 1 -> X = ADD Y, Y switch (N.getValueType()) { default: assert(0 && "Cannot shift this type!"); case MVT::i8: Opc = X86::ADD8rr; break; case MVT::i16: Opc = X86::ADD16rr; break; case MVT::i32: Opc = X86::ADD32rr; break; } Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp1); return Result; } switch (N.getValueType()) { default: assert(0 && "Cannot shift this type!"); case MVT::i8: Opc = X86::SHL8ri; break; case MVT::i16: Opc = X86::SHL16ri; break; case MVT::i32: Opc = X86::SHL32ri; break; } Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); return Result; } if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); } else { Tmp2 = SelectExpr(N.getOperand(1)); Tmp1 = SelectExpr(N.getOperand(0)); } switch (N.getValueType()) { default: assert(0 && "Cannot shift this type!"); case MVT::i8 : Opc = X86::SHL8rCL; break; case MVT::i16: Opc = X86::SHL16rCL; break; case MVT::i32: Opc = X86::SHL32rCL; break; } BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::SRL: if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { switch (N.getValueType()) { default: assert(0 && "Cannot shift this type!"); case MVT::i8: Opc = X86::SHR8ri; break; case MVT::i16: Opc = X86::SHR16ri; break; case MVT::i32: Opc = X86::SHR32ri; break; } Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); return Result; } if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); } else { Tmp2 = SelectExpr(N.getOperand(1)); Tmp1 = SelectExpr(N.getOperand(0)); } switch (N.getValueType()) { default: assert(0 && "Cannot shift this type!"); case MVT::i8 : Opc = X86::SHR8rCL; break; case MVT::i16: Opc = X86::SHR16rCL; break; case MVT::i32: Opc = X86::SHR32rCL; break; } BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::SRA: if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { switch (N.getValueType()) { default: assert(0 && "Cannot shift this type!"); case MVT::i8: Opc = X86::SAR8ri; break; case MVT::i16: Opc = X86::SAR16ri; break; case MVT::i32: Opc = X86::SAR32ri; break; } Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); return Result; } if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); } else { Tmp2 = SelectExpr(N.getOperand(1)); Tmp1 = SelectExpr(N.getOperand(0)); } switch (N.getValueType()) { default: assert(0 && "Cannot shift this type!"); case MVT::i8 : Opc = X86::SAR8rCL; break; case MVT::i16: Opc = X86::SAR16rCL; break; case MVT::i32: Opc = X86::SAR32rCL; break; } BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::SETCC: EmitCMP(N.getOperand(0), N.getOperand(1)); EmitSetCC(BB, Result, cast(N)->getCondition(), MVT::isFloatingPoint(N.getOperand(1).getValueType())); return Result; case ISD::LOAD: { // Make sure we generate both values. if (Result != 1) ExprMap[N.getValue(1)] = 1; // Generate the token else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); switch (Node->getValueType(0)) { default: assert(0 && "Cannot load this type!"); case MVT::i1: case MVT::i8: Opc = X86::MOV8rm; break; case MVT::i16: Opc = X86::MOV16rm; break; case MVT::i32: Opc = X86::MOV32rm; break; case MVT::f32: Opc = X86::FLD32m; ContainsFPCode = true; break; case MVT::f64: Opc = X86::FLD64m; ContainsFPCode = true; break; } if (ConstantPoolSDNode *CP = dyn_cast(N.getOperand(1))){ Select(N.getOperand(0)); addConstantPoolReference(BuildMI(BB, Opc, 4, Result), CP->getIndex()); } else { X86AddressMode AM; EmitFoldedLoad(N, AM); addFullAddress(BuildMI(BB, Opc, 4, Result), AM); } return Result; } case ISD::DYNAMIC_STACKALLOC: // Generate both result values. if (Result != 1) ExprMap[N.getValue(1)] = 1; // Generate the token else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); // FIXME: We are currently ignoring the requested alignment for handling // greater than the stack alignment. This will need to be revisited at some // point. Align = N.getOperand(2); if (!isa(N.getOperand(2)) || cast(N.getOperand(2))->getValue() != 0) { std::cerr << "Cannot allocate stack object with greater alignment than" << " the stack alignment yet!"; abort(); } if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { Select(N.getOperand(0)); BuildMI(BB, X86::SUB32ri, 2, X86::ESP).addReg(X86::ESP) .addImm(CN->getValue()); } else { if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); } else { Tmp1 = SelectExpr(N.getOperand(1)); Select(N.getOperand(0)); } // Subtract size from stack pointer, thereby allocating some space. BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(Tmp1); } // Put a pointer to the space into the result register, by copying the stack // pointer. BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::ESP); return Result; case ISD::CALL: // The chain for this call is now lowered. LoweredTokens.insert(N.getValue(Node->getNumValues()-1)); if (GlobalAddressSDNode *GASD = dyn_cast(N.getOperand(1))) { Select(N.getOperand(0)); BuildMI(BB, X86::CALLpcrel32, 1).addGlobalAddress(GASD->getGlobal(),true); } else if (ExternalSymbolSDNode *ESSDN = dyn_cast(N.getOperand(1))) { Select(N.getOperand(0)); BuildMI(BB, X86::CALLpcrel32, 1).addExternalSymbol(ESSDN->getSymbol(), true); } else { if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); } else { Tmp1 = SelectExpr(N.getOperand(1)); Select(N.getOperand(0)); } BuildMI(BB, X86::CALL32r, 1).addReg(Tmp1); } switch (Node->getValueType(0)) { default: assert(0 && "Unknown value type for call result!"); case MVT::Other: return 1; case MVT::i1: case MVT::i8: BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); break; case MVT::i16: BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); break; case MVT::i32: BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); if (Node->getValueType(1) == MVT::i32) BuildMI(BB, X86::MOV32rr, 1, Result+1).addReg(X86::EDX); break; case MVT::f32: case MVT::f64: // Floating-point return values live in %ST(0) ContainsFPCode = true; BuildMI(BB, X86::FpGETRESULT, 1, Result); break; } return Result+N.ResNo; } return 0; } void ISel::Select(SDOperand N) { unsigned Tmp1, Tmp2, Opc; // FIXME: Disable for our current expansion model! if (/*!N->hasOneUse() &&*/ !LoweredTokens.insert(N).second) return; // Already selected. SDNode *Node = N.Val; switch (Node->getOpcode()) { default: Node->dump(); std::cerr << "\n"; assert(0 && "Node not handled yet!"); case ISD::EntryToken: return; // Noop case ISD::CopyToReg: Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = cast(N)->getReg(); if (Tmp1 != Tmp2) { switch (N.getOperand(1).getValueType()) { default: assert(0 && "Invalid type for operation!"); case MVT::i1: case MVT::i8: Opc = X86::MOV8rr; break; case MVT::i16: Opc = X86::MOV16rr; break; case MVT::i32: Opc = X86::MOV32rr; break; case MVT::f32: case MVT::f64: Opc = X86::FpMOV; ContainsFPCode = true; break; } BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1); } return; case ISD::RET: switch (N.getNumOperands()) { default: assert(0 && "Unknown return instruction!"); case 3: assert(N.getOperand(1).getValueType() == MVT::i32 && N.getOperand(2).getValueType() == MVT::i32 && "Unknown two-register value!"); if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = SelectExpr(N.getOperand(2)); } else { Tmp2 = SelectExpr(N.getOperand(2)); Tmp1 = SelectExpr(N.getOperand(1)); } Select(N.getOperand(0)); BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(Tmp2); // Declare that EAX & EDX are live on exit. BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX) .addReg(X86::ESP); break; case 2: if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); } else { Tmp1 = SelectExpr(N.getOperand(1)); Select(N.getOperand(0)); } switch (N.getOperand(1).getValueType()) { default: assert(0 && "All other types should have been promoted!!"); case MVT::f64: BuildMI(BB, X86::FpSETRESULT, 1).addReg(Tmp1); // Declare that top-of-stack is live on exit BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP); break; case MVT::i32: BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP); break; } break; case 1: Select(N.getOperand(0)); break; } BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction return; case ISD::BR: { Select(N.getOperand(0)); MachineBasicBlock *Dest = cast(N.getOperand(1))->getBasicBlock(); BuildMI(BB, X86::JMP, 1).addMBB(Dest); return; } case ISD::BRCOND: { MachineBasicBlock *Dest = cast(N.getOperand(2))->getBasicBlock(); // Try to fold a setcc into the branch. If this fails, emit a test/jne // pair. if (EmitBranchCC(Dest, N.getOperand(0), N.getOperand(1))) { if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); } else { Tmp1 = SelectExpr(N.getOperand(1)); Select(N.getOperand(0)); } BuildMI(BB, X86::TEST8rr, 2).addReg(Tmp1).addReg(Tmp1); BuildMI(BB, X86::JNE, 1).addMBB(Dest); } return; } case ISD::LOAD: case ISD::CALL: case ISD::DYNAMIC_STACKALLOC: SelectExpr(N); return; case ISD::STORE: { // Select the address. X86AddressMode AM; if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { Opc = 0; switch (CN->getValueType(0)) { default: assert(0 && "Invalid type for operation!"); case MVT::i1: case MVT::i8: Opc = X86::MOV8mi; break; case MVT::i16: Opc = X86::MOV16mi; break; case MVT::i32: Opc = X86::MOV32mi; break; case MVT::f32: case MVT::f64: break; } if (Opc) { if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { Select(N.getOperand(0)); SelectAddress(N.getOperand(2), AM); } else { SelectAddress(N.getOperand(2), AM); Select(N.getOperand(0)); } addFullAddress(BuildMI(BB, Opc, 4+1), AM).addImm(CN->getValue()); return; } } switch (N.getOperand(1).getValueType()) { default: assert(0 && "Cannot store this type!"); case MVT::i1: case MVT::i8: Opc = X86::MOV8mr; break; case MVT::i16: Opc = X86::MOV16mr; break; case MVT::i32: Opc = X86::MOV32mr; break; case MVT::f32: Opc = X86::FST32m; break; case MVT::f64: Opc = X86::FST64m; break; } std::vector > RP; RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0)); RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1)); RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2)); std::sort(RP.begin(), RP.end()); for (unsigned i = 0; i != 3; ++i) switch (RP[2-i].second) { default: assert(0 && "Unknown operand number!"); case 0: Select(N.getOperand(0)); break; case 1: Tmp1 = SelectExpr(N.getOperand(1)); break; case 2: SelectAddress(N.getOperand(2), AM); break; } addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1); return; } case ISD::ADJCALLSTACKDOWN: case ISD::ADJCALLSTACKUP: Select(N.getOperand(0)); Tmp1 = cast(N.getOperand(1))->getValue(); Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? X86::ADJCALLSTACKDOWN : X86::ADJCALLSTACKUP; BuildMI(BB, Opc, 1).addImm(Tmp1); return; case ISD::MEMSET: { Select(N.getOperand(0)); // Select the chain. unsigned Align = (unsigned)cast(Node->getOperand(4))->getValue(); if (Align == 0) Align = 1; // Turn the byte code into # iterations unsigned CountReg; unsigned Opcode; if (ConstantSDNode *ValC = dyn_cast(Node->getOperand(2))) { unsigned Val = ValC->getValue() & 255; // If the value is a constant, then we can potentially use larger sets. switch (Align & 3) { case 2: // WORD aligned CountReg = MakeReg(MVT::i32); if (ConstantSDNode *I = dyn_cast(Node->getOperand(3))) { BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2); } else { unsigned ByteReg = SelectExpr(Node->getOperand(3)); BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); } BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); Opcode = X86::REP_STOSW; break; case 0: // DWORD aligned CountReg = MakeReg(MVT::i32); if (ConstantSDNode *I = dyn_cast(Node->getOperand(3))) { BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4); } else { unsigned ByteReg = SelectExpr(Node->getOperand(3)); BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); } Val = (Val << 8) | Val; BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); Opcode = X86::REP_STOSD; break; default: // BYTE aligned CountReg = SelectExpr(Node->getOperand(3)); BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); Opcode = X86::REP_STOSB; break; } } else { // If it's not a constant value we are storing, just fall back. We could // try to be clever to form 16 bit and 32 bit values, but we don't yet. unsigned ValReg = SelectExpr(Node->getOperand(2)); BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); CountReg = SelectExpr(Node->getOperand(3)); Opcode = X86::REP_STOSB; } // No matter what the alignment is, we put the source in ESI, the // destination in EDI, and the count in ECX. unsigned TmpReg1 = SelectExpr(Node->getOperand(1)); BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); BuildMI(BB, Opcode, 0); return; } case ISD::MEMCPY: Select(N.getOperand(0)); // Select the chain. unsigned Align = (unsigned)cast(Node->getOperand(4))->getValue(); if (Align == 0) Align = 1; // Turn the byte code into # iterations unsigned CountReg; unsigned Opcode; switch (Align & 3) { case 2: // WORD aligned CountReg = MakeReg(MVT::i32); if (ConstantSDNode *I = dyn_cast(Node->getOperand(3))) { BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2); } else { unsigned ByteReg = SelectExpr(Node->getOperand(3)); BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); } Opcode = X86::REP_MOVSW; break; case 0: // DWORD aligned CountReg = MakeReg(MVT::i32); if (ConstantSDNode *I = dyn_cast(Node->getOperand(3))) { BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4); } else { unsigned ByteReg = SelectExpr(Node->getOperand(3)); BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); } Opcode = X86::REP_MOVSD; break; default: // BYTE aligned CountReg = SelectExpr(Node->getOperand(3)); Opcode = X86::REP_MOVSB; break; } // No matter what the alignment is, we put the source in ESI, the // destination in EDI, and the count in ECX. unsigned TmpReg1 = SelectExpr(Node->getOperand(1)); unsigned TmpReg2 = SelectExpr(Node->getOperand(2)); BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); BuildMI(BB, Opcode, 0); return; } assert(0 && "Should not be reached!"); } /// createX86PatternInstructionSelector - This pass converts an LLVM function /// into a machine code representation using pattern matching and a machine /// description file. /// FunctionPass *llvm::createX86PatternInstructionSelector(TargetMachine &TM) { return new ISel(TM); }