//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the SelectionDAGISel class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/IntrinsicInst.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineDebugInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Debug.h" #include #include #include #include using namespace llvm; #ifndef NDEBUG static cl::opt ViewISelDAGs("view-isel-dags", cl::Hidden, cl::desc("Pop up a window to show isel dags as they are selected")); static cl::opt ViewSchedDAGs("view-sched-dags", cl::Hidden, cl::desc("Pop up a window to show sched dags as they are processed")); #else static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0; #endif // Scheduling heuristics enum SchedHeuristics { defaultScheduling, // Let the target specify its preference. noScheduling, // No scheduling, emit breadth first sequence. simpleScheduling, // Two pass, min. critical path, max. utilization. simpleNoItinScheduling, // Same as above exact using generic latency. listSchedulingBURR, // Bottom-up reg reduction list scheduling. listSchedulingTDRR, // Top-down reg reduction list scheduling. listSchedulingTD // Top-down list scheduler. }; namespace { cl::opt ISHeuristic( "sched", cl::desc("Choose scheduling style"), cl::init(defaultScheduling), cl::values( clEnumValN(defaultScheduling, "default", "Target preferred scheduling style"), clEnumValN(noScheduling, "none", "No scheduling: breadth first sequencing"), clEnumValN(simpleScheduling, "simple", "Simple two pass scheduling: minimize critical path " "and maximize processor utilization"), clEnumValN(simpleNoItinScheduling, "simple-noitin", "Simple two pass scheduling: Same as simple " "except using generic latency"), clEnumValN(listSchedulingBURR, "list-burr", "Bottom-up register reduction list scheduling"), clEnumValN(listSchedulingTDRR, "list-tdrr", "Top-down register reduction list scheduling"), clEnumValN(listSchedulingTD, "list-td", "Top-down list scheduler"), clEnumValEnd)); } // namespace namespace { /// RegsForValue - This struct represents the physical registers that a /// particular value is assigned and the type information about the value. /// This is needed because values can be promoted into larger registers and /// expanded into multiple smaller registers than the value. struct RegsForValue { /// Regs - This list hold the register (for legal and promoted values) /// or register set (for expanded values) that the value should be assigned /// to. std::vector Regs; /// RegVT - The value type of each register. /// MVT::ValueType RegVT; /// ValueVT - The value type of the LLVM value, which may be promoted from /// RegVT or made from merging the two expanded parts. MVT::ValueType ValueVT; RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {} RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt) : RegVT(regvt), ValueVT(valuevt) { Regs.push_back(Reg); } RegsForValue(const std::vector ®s, MVT::ValueType regvt, MVT::ValueType valuevt) : Regs(regs), RegVT(regvt), ValueVT(valuevt) { } /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from /// this value and returns the result as a ValueVT value. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. SDOperand getCopyFromRegs(SelectionDAG &DAG, SDOperand &Chain, SDOperand &Flag) const; /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the /// specified value into the registers specified by this object. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. void getCopyToRegs(SDOperand Val, SelectionDAG &DAG, SDOperand &Chain, SDOperand &Flag) const; /// AddInlineAsmOperands - Add this value to the specified inlineasm node /// operand list. This adds the code marker and includes the number of /// values added into it. void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, std::vector &Ops) const; }; } namespace llvm { //===--------------------------------------------------------------------===// /// FunctionLoweringInfo - This contains information that is global to a /// function that is used when lowering a region of the function. class FunctionLoweringInfo { public: TargetLowering &TLI; Function &Fn; MachineFunction &MF; SSARegMap *RegMap; FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF); /// MBBMap - A mapping from LLVM basic blocks to their machine code entry. std::map MBBMap; /// ValueMap - Since we emit code for the function a basic block at a time, /// we must remember which virtual registers hold the values for /// cross-basic-block values. std::map ValueMap; /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in /// the entry block. This allows the allocas to be efficiently referenced /// anywhere in the function. std::map StaticAllocaMap; unsigned MakeReg(MVT::ValueType VT) { return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); } unsigned CreateRegForValue(const Value *V); unsigned InitializeRegForValue(const Value *V) { unsigned &R = ValueMap[V]; assert(R == 0 && "Already initialized this value register!"); return R = CreateRegForValue(V); } }; } /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it, or used by a /// switch instruction, which may expand to multiple basic blocks. static bool isUsedOutsideOfDefiningBlock(Instruction *I) { if (isa(I)) return true; BasicBlock *BB = I->getParent(); for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) if (cast(*UI)->getParent() != BB || isa(*UI) || isa(*UI)) return true; return false; } /// isOnlyUsedInEntryBlock - If the specified argument is only used in the /// entry block, return true. This includes arguments used by switches, since /// the switch may expand into multiple basic blocks. static bool isOnlyUsedInEntryBlock(Argument *A) { BasicBlock *Entry = A->getParent()->begin(); for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) if (cast(*UI)->getParent() != Entry || isa(*UI)) return false; // Use not in entry block. return true; } FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli, Function &fn, MachineFunction &mf) : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) { // Create a vreg for each argument register that is not dead and is used // outside of the entry block for the function. for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); AI != E; ++AI) if (!isOnlyUsedInEntryBlock(AI)) InitializeRegForValue(AI); // Initialize the mapping of values to registers. This is only set up for // instruction values that are used outside of the block that defines // them. Function::iterator BB = Fn.begin(), EB = Fn.end(); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (AllocaInst *AI = dyn_cast(I)) if (ConstantUInt *CUI = dyn_cast(AI->getArraySize())) { const Type *Ty = AI->getAllocatedType(); uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty), AI->getAlignment()); // If the alignment of the value is smaller than the size of the value, // and if the size of the value is particularly small (<= 8 bytes), // round up to the size of the value for potentially better performance. // // FIXME: This could be made better with a preferred alignment hook in // TargetData. It serves primarily to 8-byte align doubles for X86. if (Align < TySize && TySize <= 8) Align = TySize; TySize *= CUI->getValue(); // Get total allocated size. if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. StaticAllocaMap[AI] = MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align); } for (; BB != EB; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) if (!isa(I) || !StaticAllocaMap.count(cast(I))) InitializeRegForValue(I); // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This // also creates the initial PHI MachineInstrs, though none of the input // operands are populated. for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) { MachineBasicBlock *MBB = new MachineBasicBlock(BB); MBBMap[BB] = MBB; MF.getBasicBlockList().push_back(MBB); // Create Machine PHI nodes for LLVM PHI nodes, lowering them as // appropriate. PHINode *PN; for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast(I)); ++I) if (!PN->use_empty()) { MVT::ValueType VT = TLI.getValueType(PN->getType()); unsigned NumElements; if (VT != MVT::Vector) NumElements = TLI.getNumElements(VT); else { MVT::ValueType VT1,VT2; NumElements = TLI.getPackedTypeBreakdown(cast(PN->getType()), VT1, VT2); } unsigned PHIReg = ValueMap[PN]; assert(PHIReg &&"PHI node does not have an assigned virtual register!"); for (unsigned i = 0; i != NumElements; ++i) BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i); } } } /// CreateRegForValue - Allocate the appropriate number of virtual registers of /// the correctly promoted or expanded types. Assign these registers /// consecutive vreg numbers and return the first assigned number. unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { MVT::ValueType VT = TLI.getValueType(V->getType()); // The number of multiples of registers that we need, to, e.g., split up // a <2 x int64> -> 4 x i32 registers. unsigned NumVectorRegs = 1; // If this is a packed type, figure out what type it will decompose into // and how many of the elements it will use. if (VT == MVT::Vector) { const PackedType *PTy = cast(V->getType()); unsigned NumElts = PTy->getNumElements(); MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType()); // Divide the input until we get to a supported size. This will always // end with a scalar if the target doesn't support vectors. while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) { NumElts >>= 1; NumVectorRegs <<= 1; } if (NumElts == 1) VT = EltTy; else VT = getVectorType(EltTy, NumElts); } // The common case is that we will only create one register for this // value. If we have that case, create and return the virtual register. unsigned NV = TLI.getNumElements(VT); if (NV == 1) { // If we are promoting this value, pick the next largest supported type. MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT); unsigned Reg = MakeReg(PromotedType); // If this is a vector of supported or promoted types (e.g. 4 x i16), // create all of the registers. for (unsigned i = 1; i != NumVectorRegs; ++i) MakeReg(PromotedType); return Reg; } // If this value is represented with multiple target registers, make sure // to create enough consecutive registers of the right (smaller) type. unsigned NT = VT-1; // Find the type to use. while (TLI.getNumElements((MVT::ValueType)NT) != 1) --NT; unsigned R = MakeReg((MVT::ValueType)NT); for (unsigned i = 1; i != NV*NumVectorRegs; ++i) MakeReg((MVT::ValueType)NT); return R; } //===----------------------------------------------------------------------===// /// SelectionDAGLowering - This is the common target-independent lowering /// implementation that is parameterized by a TargetLowering object. /// Also, targets can overload any lowering method. /// namespace llvm { class SelectionDAGLowering { MachineBasicBlock *CurMBB; std::map NodeMap; /// PendingLoads - Loads are not emitted to the program immediately. We bunch /// them up and then emit token factor nodes when possible. This allows us to /// get simple disambiguation between loads without worrying about alias /// analysis. std::vector PendingLoads; /// Case - A pair of values to record the Value for a switch case, and the /// case's target basic block. typedef std::pair Case; typedef std::vector::iterator CaseItr; typedef std::pair CaseRange; /// CaseRec - A struct with ctor used in lowering switches to a binary tree /// of conditional branches. struct CaseRec { CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) : CaseBB(bb), LT(lt), GE(ge), Range(r) {} /// CaseBB - The MBB in which to emit the compare and branch MachineBasicBlock *CaseBB; /// LT, GE - If nonzero, we know the current case value must be less-than or /// greater-than-or-equal-to these Constants. Constant *LT; Constant *GE; /// Range - A pair of iterators representing the range of case values to be /// processed at this point in the binary search tree. CaseRange Range; }; /// The comparison function for sorting Case values. struct CaseCmp { bool operator () (const Case& C1, const Case& C2) { if (const ConstantUInt* U1 = dyn_cast(C1.first)) return U1->getValue() < cast(C2.first)->getValue(); const ConstantSInt* S1 = dyn_cast(C1.first); return S1->getValue() < cast(C2.first)->getValue(); } }; public: // TLI - This is information that describes the available target features we // need for lowering. This indicates when operations are unavailable, // implemented with a libcall, etc. TargetLowering &TLI; SelectionDAG &DAG; const TargetData *TD; /// SwitchCases - Vector of CaseBlock structures used to communicate /// SwitchInst code generation information. std::vector SwitchCases; SelectionDAGISel::JumpTable JT; /// FuncInfo - Information about the function as a whole. /// FunctionLoweringInfo &FuncInfo; SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, FunctionLoweringInfo &funcinfo) : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), JT(0,0,0,0), FuncInfo(funcinfo) { } /// getRoot - Return the current virtual root of the Selection DAG. /// SDOperand getRoot() { if (PendingLoads.empty()) return DAG.getRoot(); if (PendingLoads.size() == 1) { SDOperand Root = PendingLoads[0]; DAG.setRoot(Root); PendingLoads.clear(); return Root; } // Otherwise, we have to make a token factor node. SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads); PendingLoads.clear(); DAG.setRoot(Root); return Root; } void visit(Instruction &I) { visit(I.getOpcode(), I); } void visit(unsigned Opcode, User &I) { switch (Opcode) { default: assert(0 && "Unknown instruction type encountered!"); abort(); // Build the switch statement using the Instruction.def file. #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); #include "llvm/Instruction.def" } } void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr, SDOperand SrcValue, SDOperand Root, bool isVolatile); SDOperand getIntPtrConstant(uint64_t Val) { return DAG.getConstant(Val, TLI.getPointerTy()); } SDOperand getValue(const Value *V); const SDOperand &setValue(const Value *V, SDOperand NewN) { SDOperand &N = NodeMap[V]; assert(N.Val == 0 && "Already set a value for this node!"); return N = NewN; } RegsForValue GetRegistersForValue(const std::string &ConstrCode, MVT::ValueType VT, bool OutReg, bool InReg, std::set &OutputRegs, std::set &InputRegs); // Terminator instructions. void visitRet(ReturnInst &I); void visitBr(BranchInst &I); void visitSwitch(SwitchInst &I); void visitUnreachable(UnreachableInst &I) { /* noop */ } // Helper for visitSwitch void visitSwitchCase(SelectionDAGISel::CaseBlock &CB); void visitJumpTable(SelectionDAGISel::JumpTable &JT); // These all get lowered before this pass. void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); } void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); } void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp); void visitShift(User &I, unsigned Opcode); void visitAdd(User &I) { visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD); } void visitSub(User &I); void visitMul(User &I) { visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL); } void visitDiv(User &I) { const Type *Ty = I.getType(); visitBinary(I, Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV, Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV); } void visitRem(User &I) { const Type *Ty = I.getType(); visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0); } void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); } void visitOr (User &I) { visitBinary(I, ISD::OR, 0, ISD::VOR); } void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); } void visitShl(User &I) { visitShift(I, ISD::SHL); } void visitShr(User &I) { visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA); } void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc); void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); } void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); } void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); } void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); } void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); } void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); } void visitExtractElement(User &I); void visitInsertElement(User &I); void visitShuffleVector(User &I); void visitGetElementPtr(User &I); void visitCast(User &I); void visitSelect(User &I); void visitMalloc(MallocInst &I); void visitFree(FreeInst &I); void visitAlloca(AllocaInst &I); void visitLoad(LoadInst &I); void visitStore(StoreInst &I); void visitPHI(PHINode &I) { } // PHI nodes are handled specially. void visitCall(CallInst &I); void visitInlineAsm(CallInst &I); const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic); void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic); void visitVAStart(CallInst &I); void visitVAArg(VAArgInst &I); void visitVAEnd(CallInst &I); void visitVACopy(CallInst &I); void visitFrameReturnAddress(CallInst &I, bool isFrameAddress); void visitMemIntrinsic(CallInst &I, unsigned Op); void visitUserOp1(Instruction &I) { assert(0 && "UserOp1 should not exist at instruction selection time!"); abort(); } void visitUserOp2(Instruction &I) { assert(0 && "UserOp2 should not exist at instruction selection time!"); abort(); } }; } // end namespace llvm SDOperand SelectionDAGLowering::getValue(const Value *V) { SDOperand &N = NodeMap[V]; if (N.Val) return N; const Type *VTy = V->getType(); MVT::ValueType VT = TLI.getValueType(VTy); if (Constant *C = const_cast(dyn_cast(V))) { if (ConstantExpr *CE = dyn_cast(C)) { visit(CE->getOpcode(), *CE); assert(N.Val && "visit didn't populate the ValueMap!"); return N; } else if (GlobalValue *GV = dyn_cast(C)) { return N = DAG.getGlobalAddress(GV, VT); } else if (isa(C)) { return N = DAG.getConstant(0, TLI.getPointerTy()); } else if (isa(C)) { if (!isa(VTy)) return N = DAG.getNode(ISD::UNDEF, VT); // Create a VBUILD_VECTOR of undef nodes. const PackedType *PTy = cast(VTy); unsigned NumElements = PTy->getNumElements(); MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); std::vector Ops; Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT)); // Create a VConstant node with generic Vector type. Ops.push_back(DAG.getConstant(NumElements, MVT::i32)); Ops.push_back(DAG.getValueType(PVT)); return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops); } else if (ConstantFP *CFP = dyn_cast(C)) { return N = DAG.getConstantFP(CFP->getValue(), VT); } else if (const PackedType *PTy = dyn_cast(VTy)) { unsigned NumElements = PTy->getNumElements(); MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); // Now that we know the number and type of the elements, push a // Constant or ConstantFP node onto the ops list for each element of // the packed constant. std::vector Ops; if (ConstantPacked *CP = dyn_cast(C)) { for (unsigned i = 0; i != NumElements; ++i) Ops.push_back(getValue(CP->getOperand(i))); } else { assert(isa(C) && "Unknown packed constant!"); SDOperand Op; if (MVT::isFloatingPoint(PVT)) Op = DAG.getConstantFP(0, PVT); else Op = DAG.getConstant(0, PVT); Ops.assign(NumElements, Op); } // Create a VBUILD_VECTOR node with generic Vector type. Ops.push_back(DAG.getConstant(NumElements, MVT::i32)); Ops.push_back(DAG.getValueType(PVT)); return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops); } else { // Canonicalize all constant ints to be unsigned. return N = DAG.getConstant(cast(C)->getRawValue(),VT); } } if (const AllocaInst *AI = dyn_cast(V)) { std::map::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); } std::map::const_iterator VMI = FuncInfo.ValueMap.find(V); assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!"); unsigned InReg = VMI->second; // If this type is not legal, make it so now. if (VT != MVT::Vector) { MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT); N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT); if (DestVT < VT) { // Source must be expanded. This input value is actually coming from the // register pair VMI->second and VMI->second+1. N = DAG.getNode(ISD::BUILD_PAIR, VT, N, DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT)); } else if (DestVT > VT) { // Promotion case if (MVT::isFloatingPoint(VT)) N = DAG.getNode(ISD::FP_ROUND, VT, N); else N = DAG.getNode(ISD::TRUNCATE, VT, N); } } else { // Otherwise, if this is a vector, make it available as a generic vector // here. MVT::ValueType PTyElementVT, PTyLegalElementVT; const PackedType *PTy = cast(VTy); unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT, PTyLegalElementVT); // Build a VBUILD_VECTOR with the input registers. std::vector Ops; if (PTyElementVT == PTyLegalElementVT) { // If the value types are legal, just VBUILD the CopyFromReg nodes. for (unsigned i = 0; i != NE; ++i) Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, PTyElementVT)); } else if (PTyElementVT < PTyLegalElementVT) { // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate. for (unsigned i = 0; i != NE; ++i) { SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, PTyElementVT); if (MVT::isFloatingPoint(PTyElementVT)) Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op); else Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op); Ops.push_back(Op); } } else { // If the register was expanded, use BUILD_PAIR. assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!"); for (unsigned i = 0; i != NE/2; ++i) { SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, PTyElementVT); SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, PTyElementVT); Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1)); } } Ops.push_back(DAG.getConstant(NE, MVT::i32)); Ops.push_back(DAG.getValueType(PTyLegalElementVT)); N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops); // Finally, use a VBIT_CONVERT to make this available as the appropriate // vector type. N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N, DAG.getConstant(PTy->getNumElements(), MVT::i32), DAG.getValueType(TLI.getValueType(PTy->getElementType()))); } return N; } void SelectionDAGLowering::visitRet(ReturnInst &I) { if (I.getNumOperands() == 0) { DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot())); return; } std::vector NewValues; NewValues.push_back(getRoot()); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { SDOperand RetOp = getValue(I.getOperand(i)); // If this is an integer return value, we need to promote it ourselves to // the full width of a register, since LegalizeOp will use ANY_EXTEND rather // than sign/zero. if (MVT::isInteger(RetOp.getValueType()) && RetOp.getValueType() < MVT::i64) { MVT::ValueType TmpVT; if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote) TmpVT = TLI.getTypeToTransformTo(MVT::i32); else TmpVT = MVT::i32; if (I.getOperand(i)->getType()->isSigned()) RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp); else RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp); } NewValues.push_back(RetOp); } DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues)); } void SelectionDAGLowering::visitBr(BranchInst &I) { // Update machine-CFG edges. MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; CurMBB->addSuccessor(Succ0MBB); // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; if (I.isUnconditional()) { // If this is not a fall-through branch, emit the branch. if (Succ0MBB != NextBlock) DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), DAG.getBasicBlock(Succ0MBB))); } else { MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; CurMBB->addSuccessor(Succ1MBB); SDOperand Cond = getValue(I.getCondition()); if (Succ1MBB == NextBlock) { // If the condition is false, fall through. This means we should branch // if the condition is true to Succ #0. DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond, DAG.getBasicBlock(Succ0MBB))); } else if (Succ0MBB == NextBlock) { // If the condition is true, fall through. This means we should branch if // the condition is false to Succ #1. Invert the condition first. SDOperand True = DAG.getConstant(1, Cond.getValueType()); Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond, DAG.getBasicBlock(Succ1MBB))); } else { std::vector Ops; Ops.push_back(getRoot()); // If the false case is the current basic block, then this is a self // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it // adds an extra instruction in the loop. Instead, invert the // condition and emit "Loop: ... br!cond Loop; br Out. if (CurMBB == Succ1MBB) { std::swap(Succ0MBB, Succ1MBB); SDOperand True = DAG.getConstant(1, Cond.getValueType()); Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); } SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond, DAG.getBasicBlock(Succ0MBB)); DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True, DAG.getBasicBlock(Succ1MBB))); } } } /// visitSwitchCase - Emits the necessary code to represent a single node in /// the binary search tree resulting from lowering a switch instruction. void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) { SDOperand SwitchOp = getValue(CB.SwitchV); SDOperand CaseOp = getValue(CB.CaseC); SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC); // Set NextBlock to be the MBB immediately after the current one, if any. // This is used to avoid emitting unnecessary branches to the next block. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; // If the lhs block is the next block, invert the condition so that we can // fall through to the lhs instead of the rhs block. if (CB.LHSBB == NextBlock) { std::swap(CB.LHSBB, CB.RHSBB); SDOperand True = DAG.getConstant(1, Cond.getValueType()); Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); } SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond, DAG.getBasicBlock(CB.LHSBB)); if (CB.RHSBB == NextBlock) DAG.setRoot(BrCond); else DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, DAG.getBasicBlock(CB.RHSBB))); // Update successor info CurMBB->addSuccessor(CB.LHSBB); CurMBB->addSuccessor(CB.RHSBB); } /// visitSwitchCase - Emits the necessary code to represent a single node in /// the binary search tree resulting from lowering a switch instruction. void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) { // FIXME: Need to emit different code for PIC vs. Non-PIC, specifically, // we need to add the address of the jump table to the value loaded, since // the entries in the jump table will be differences rather than absolute // addresses. // Emit the code for the jump table MVT::ValueType PTy = TLI.getPointerTy(); unsigned PTyBytes = MVT::getSizeInBits(PTy)/8; SDOperand Copy = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy); SDOperand IDX = DAG.getNode(ISD::MUL, PTy, Copy, DAG.getConstant(PTyBytes, PTy)); SDOperand ADD = DAG.getNode(ISD::ADD, PTy, IDX, DAG.getJumpTable(JT.JTI,PTy)); SDOperand LD = DAG.getLoad(PTy, Copy.getValue(1), ADD, DAG.getSrcValue(0)); DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD)); } void SelectionDAGLowering::visitSwitch(SwitchInst &I) { // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; // If there is only the default destination, branch to it if it is not the // next basic block. Otherwise, just fall through. if (I.getNumOperands() == 2) { // Update machine-CFG edges. MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()]; // If this is not a fall-through branch, emit the branch. if (DefaultMBB != NextBlock) DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), DAG.getBasicBlock(DefaultMBB))); return; } // If there are any non-default case statements, create a vector of Cases // representing each one, and sort the vector so that we can efficiently // create a binary search tree from them. std::vector Cases; for (unsigned i = 1; i < I.getNumSuccessors(); ++i) { MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)]; Cases.push_back(Case(I.getSuccessorValue(i), SMBB)); } std::sort(Cases.begin(), Cases.end(), CaseCmp()); // Get the Value to be switched on and default basic blocks, which will be // inserted into CaseBlock records, representing basic blocks in the binary // search tree. Value *SV = I.getOperand(0); MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()]; // Get the MachineFunction which holds the current MBB. This is used during // emission of jump tables, and when inserting any additional MBBs necessary // to represent the switch. MachineFunction *CurMF = CurMBB->getParent(); const BasicBlock *LLVMBB = CurMBB->getBasicBlock(); Reloc::Model Relocs = TLI.getTargetMachine().getRelocationModel(); // If the switch has more than 5 blocks, and at least 31.25% dense, and the // target supports indirect branches, then emit a jump table rather than // lowering the switch to a binary tree of conditional branches. // FIXME: Make this work with PIC code if (TLI.isOperationLegal(ISD::BRIND, TLI.getPointerTy()) && (Relocs == Reloc::Static || Relocs == Reloc::DynamicNoPIC) && Cases.size() > 5) { uint64_t First = cast(Cases.front().first)->getRawValue(); uint64_t Last = cast(Cases.back().first)->getRawValue(); double Density = (double)Cases.size() / (double)((Last - First) + 1ULL); if (Density >= 0.3125) { // Create a new basic block to hold the code for loading the address // of the jump table, and jumping to it. Update successor information; // we will either branch to the default case for the switch, or the jump // table. MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB); CurMF->getBasicBlockList().insert(BBI, JumpTableBB); CurMBB->addSuccessor(Default); CurMBB->addSuccessor(JumpTableBB); // Subtract the lowest switch case value from the value being switched on // and conditional branch to default mbb if the result is greater than the // difference between smallest and largest cases. SDOperand SwitchOp = getValue(SV); MVT::ValueType VT = SwitchOp.getValueType(); SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, DAG.getConstant(First, VT)); // The SDNode we just created, which holds the value being switched on // minus the the smallest case value, needs to be copied to a virtual // register so it can be used as an index into the jump table in a // subsequent basic block. This value may be smaller or larger than the // target's pointer type, and therefore require extension or truncating. if (VT > TLI.getPointerTy()) SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB); else SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB); unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp); // Emit the range check for the jump table, and branch to the default // block for the switch statement if the value being switched on exceeds // the largest case in the switch. SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB, DAG.getConstant(Last-First,VT), ISD::SETUGT); DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP, DAG.getBasicBlock(Default))); // Build a vector of destination BBs, corresponding to each target // of the jump table. If the value of the jump table slot corresponds to // a case statement, push the case's BB onto the vector, otherwise, push // the default BB. std::set UniqueBBs; std::vector DestBBs; uint64_t TEI = First; for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI) { if (cast(ii->first)->getRawValue() == TEI) { DestBBs.push_back(ii->second); UniqueBBs.insert(ii->second); ++ii; } else { DestBBs.push_back(Default); UniqueBBs.insert(Default); } } // Update successor info for (std::set::iterator ii = UniqueBBs.begin(), ee = UniqueBBs.end(); ii != ee; ++ii) JumpTableBB->addSuccessor(*ii); // Create a jump table index for this jump table, or return an existing // one. unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); // Set the jump table information so that we can codegen it as a second // MachineBasicBlock JT.Reg = JumpTableReg; JT.JTI = JTI; JT.MBB = JumpTableBB; JT.Default = Default; return; } } // Push the initial CaseRec onto the worklist std::vector CaseVec; CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); while (!CaseVec.empty()) { // Grab a record representing a case range to process off the worklist CaseRec CR = CaseVec.back(); CaseVec.pop_back(); // Size is the number of Cases represented by this range. If Size is 1, // then we are processing a leaf of the binary search tree. Otherwise, // we need to pick a pivot, and push left and right ranges onto the // worklist. unsigned Size = CR.Range.second - CR.Range.first; if (Size == 1) { // Create a CaseBlock record representing a conditional branch to // the Case's target mbb if the value being switched on SV is equal // to C. Otherwise, branch to default. Constant *C = CR.Range.first->first; MachineBasicBlock *Target = CR.Range.first->second; SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default, CR.CaseBB); // If the MBB representing the leaf node is the current MBB, then just // call visitSwitchCase to emit the code into the current block. // Otherwise, push the CaseBlock onto the vector to be later processed // by SDISel, and insert the node's MBB before the next MBB. if (CR.CaseBB == CurMBB) visitSwitchCase(CB); else { SwitchCases.push_back(CB); CurMF->getBasicBlockList().insert(BBI, CR.CaseBB); } } else { // split case range at pivot CaseItr Pivot = CR.Range.first + (Size / 2); CaseRange LHSR(CR.Range.first, Pivot); CaseRange RHSR(Pivot, CR.Range.second); Constant *C = Pivot->first; MachineBasicBlock *RHSBB = 0, *LHSBB = 0; // We know that we branch to the LHS if the Value being switched on is // less than the Pivot value, C. We use this to optimize our binary // tree a bit, by recognizing that if SV is greater than or equal to the // LHS's Case Value, and that Case Value is exactly one less than the // Pivot's Value, then we can branch directly to the LHS's Target, // rather than creating a leaf node for it. if ((LHSR.second - LHSR.first) == 1 && LHSR.first->first == CR.GE && cast(C)->getRawValue() == (cast(CR.GE)->getRawValue() + 1ULL)) { LHSBB = LHSR.first->second; } else { LHSBB = new MachineBasicBlock(LLVMBB); CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR)); } // Similar to the optimization above, if the Value being switched on is // known to be less than the Constant CR.LT, and the current Case Value // is CR.LT - 1, then we can branch directly to the target block for // the current Case Value, rather than emitting a RHS leaf node for it. if ((RHSR.second - RHSR.first) == 1 && CR.LT && cast(RHSR.first->first)->getRawValue() == (cast(CR.LT)->getRawValue() - 1ULL)) { RHSBB = RHSR.first->second; } else { RHSBB = new MachineBasicBlock(LLVMBB); CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR)); } // Create a CaseBlock record representing a conditional branch to // the LHS node if the value being switched on SV is less than C. // Otherwise, branch to LHS. ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT; SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB); if (CR.CaseBB == CurMBB) visitSwitchCase(CB); else { SwitchCases.push_back(CB); CurMF->getBasicBlockList().insert(BBI, CR.CaseBB); } } } } void SelectionDAGLowering::visitSub(User &I) { // -0.0 - X --> fneg if (I.getType()->isFloatingPoint()) { if (ConstantFP *CFP = dyn_cast(I.getOperand(0))) if (CFP->isExactlyValue(-0.0)) { SDOperand Op2 = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); return; } } visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB); } void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp) { const Type *Ty = I.getType(); SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); if (Ty->isIntegral()) { setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2)); } else if (Ty->isFloatingPoint()) { setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2)); } else { const PackedType *PTy = cast(Ty); SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32); SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType())); setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ)); } } void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2); setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); } void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode, ISD::CondCode UnsignedOpcode) { SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); ISD::CondCode Opcode = SignedOpcode; if (I.getOperand(0)->getType()->isUnsigned()) Opcode = UnsignedOpcode; setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode)); } void SelectionDAGLowering::visitSelect(User &I) { SDOperand Cond = getValue(I.getOperand(0)); SDOperand TrueVal = getValue(I.getOperand(1)); SDOperand FalseVal = getValue(I.getOperand(2)); if (!isa(I.getType())) { setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, TrueVal, FalseVal)); } else { setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal, *(TrueVal.Val->op_end()-2), *(TrueVal.Val->op_end()-1))); } } void SelectionDAGLowering::visitCast(User &I) { SDOperand N = getValue(I.getOperand(0)); MVT::ValueType SrcVT = N.getValueType(); MVT::ValueType DestVT = TLI.getValueType(I.getType()); if (DestVT == MVT::Vector) { // This is a cast to a vector from something else. This is always a bit // convert. Get information about the input vector. const PackedType *DestTy = cast(I.getType()); MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType()); setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N, DAG.getConstant(DestTy->getNumElements(),MVT::i32), DAG.getValueType(EltVT))); } else if (SrcVT == DestVT) { setValue(&I, N); // noop cast. } else if (DestVT == MVT::i1) { // Cast to bool is a comparison against zero, not truncation to zero. SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) : DAG.getConstantFP(0.0, N.getValueType()); setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE)); } else if (isInteger(SrcVT)) { if (isInteger(DestVT)) { // Int -> Int cast if (DestVT < SrcVT) // Truncating cast? setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); else if (I.getOperand(0)->getType()->isSigned()) setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N)); else setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); } else if (isFloatingPoint(DestVT)) { // Int -> FP cast if (I.getOperand(0)->getType()->isSigned()) setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N)); else setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N)); } else { assert(0 && "Unknown cast!"); } } else if (isFloatingPoint(SrcVT)) { if (isFloatingPoint(DestVT)) { // FP -> FP cast if (DestVT < SrcVT) // Rounding cast? setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N)); else setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N)); } else if (isInteger(DestVT)) { // FP -> Int cast. if (I.getType()->isSigned()) setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N)); else setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N)); } else { assert(0 && "Unknown cast!"); } } else { assert(SrcVT == MVT::Vector && "Unknown cast!"); assert(DestVT != MVT::Vector && "Casts to vector already handled!"); // This is a cast from a vector to something else. This is always a bit // convert. Get information about the input vector. setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N)); } } void SelectionDAGLowering::visitInsertElement(User &I) { SDOperand InVec = getValue(I.getOperand(0)); SDOperand InVal = getValue(I.getOperand(1)); SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), getValue(I.getOperand(2))); SDOperand Num = *(InVec.Val->op_end()-2); SDOperand Typ = *(InVec.Val->op_end()-1); setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector, InVec, InVal, InIdx, Num, Typ)); } void SelectionDAGLowering::visitExtractElement(User &I) { SDOperand InVec = getValue(I.getOperand(0)); SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), getValue(I.getOperand(1))); SDOperand Typ = *(InVec.Val->op_end()-1); setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, TLI.getValueType(I.getType()), InVec, InIdx)); } void SelectionDAGLowering::visitShuffleVector(User &I) { SDOperand V1 = getValue(I.getOperand(0)); SDOperand V2 = getValue(I.getOperand(1)); SDOperand Mask = getValue(I.getOperand(2)); SDOperand Num = *(V1.Val->op_end()-2); SDOperand Typ = *(V2.Val->op_end()-1); setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, V1, V2, Mask, Num, Typ)); } void SelectionDAGLowering::visitGetElementPtr(User &I) { SDOperand N = getValue(I.getOperand(0)); const Type *Ty = I.getOperand(0)->getType(); for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); OI != E; ++OI) { Value *Idx = *OI; if (const StructType *StTy = dyn_cast(Ty)) { unsigned Field = cast(Idx)->getValue(); if (Field) { // N = N + Offset uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field]; N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offset)); } Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); // If this is a constant subscript, handle it quickly. if (ConstantInt *CI = dyn_cast(Idx)) { if (CI->getRawValue() == 0) continue; uint64_t Offs; if (ConstantSInt *CSI = dyn_cast(CI)) Offs = (int64_t)TD->getTypeSize(Ty)*CSI->getValue(); else Offs = TD->getTypeSize(Ty)*cast(CI)->getValue(); N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs)); continue; } // N = N + Idx * ElementSize; uint64_t ElementSize = TD->getTypeSize(Ty); SDOperand IdxN = getValue(Idx); // If the index is smaller or larger than intptr_t, truncate or extend // it. if (IdxN.getValueType() < N.getValueType()) { if (Idx->getType()->isSigned()) IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN); else IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN); } else if (IdxN.getValueType() > N.getValueType()) IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN); // If this is a multiply by a power of two, turn it into a shl // immediately. This is a very common case. if (isPowerOf2_64(ElementSize)) { unsigned Amt = Log2_64(ElementSize); IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN, DAG.getConstant(Amt, TLI.getShiftAmountTy())); N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); continue; } SDOperand Scale = getIntPtrConstant(ElementSize); IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); } } setValue(&I, N); } void SelectionDAGLowering::visitAlloca(AllocaInst &I) { // If this is a fixed sized alloca in the entry block of the function, // allocate it statically on the stack. if (FuncInfo.StaticAllocaMap.count(&I)) return; // getValue will auto-populate this. const Type *Ty = I.getAllocatedType(); uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty), I.getAlignment()); SDOperand AllocSize = getValue(I.getArraySize()); MVT::ValueType IntPtr = TLI.getPointerTy(); if (IntPtr < AllocSize.getValueType()) AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize); else if (IntPtr > AllocSize.getValueType()) AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize); AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize, getIntPtrConstant(TySize)); // Handle alignment. If the requested alignment is less than or equal to the // stack alignment, ignore it and round the size of the allocation up to the // stack alignment size. If the size is greater than the stack alignment, we // note this in the DYNAMIC_STACKALLOC node. unsigned StackAlign = TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); if (Align <= StackAlign) { Align = 0; // Add SA-1 to the size. AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, getIntPtrConstant(StackAlign-1)); // Mask out the low bits for alignment purposes. AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, getIntPtrConstant(~(uint64_t)(StackAlign-1))); } std::vector VTs; VTs.push_back(AllocSize.getValueType()); VTs.push_back(MVT::Other); std::vector Ops; Ops.push_back(getRoot()); Ops.push_back(AllocSize); Ops.push_back(getIntPtrConstant(Align)); SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops); DAG.setRoot(setValue(&I, DSA).getValue(1)); // Inform the Frame Information that we have just allocated a variable-sized // object. CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); } void SelectionDAGLowering::visitLoad(LoadInst &I) { SDOperand Ptr = getValue(I.getOperand(0)); SDOperand Root; if (I.isVolatile()) Root = getRoot(); else { // Do not serialize non-volatile loads against each other. Root = DAG.getRoot(); } setValue(&I, getLoadFrom(I.getType(), Ptr, DAG.getSrcValue(I.getOperand(0)), Root, I.isVolatile())); } SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr, SDOperand SrcValue, SDOperand Root, bool isVolatile) { SDOperand L; if (const PackedType *PTy = dyn_cast(Ty)) { MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, SrcValue); } else { L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SrcValue); } if (isVolatile) DAG.setRoot(L.getValue(1)); else PendingLoads.push_back(L.getValue(1)); return L; } void SelectionDAGLowering::visitStore(StoreInst &I) { Value *SrcV = I.getOperand(0); SDOperand Src = getValue(SrcV); SDOperand Ptr = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr, DAG.getSrcValue(I.getOperand(1)))); } /// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot /// access memory and has no other side effects at all. static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) { #define GET_NO_MEMORY_INTRINSICS #include "llvm/Intrinsics.gen" #undef GET_NO_MEMORY_INTRINSICS return false; } // IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't // have any side-effects or if it only reads memory. static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) { #define GET_SIDE_EFFECT_INFO #include "llvm/Intrinsics.gen" #undef GET_SIDE_EFFECT_INFO return false; } /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC /// node. void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, unsigned Intrinsic) { bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic); bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic); // Build the operand list. std::vector Ops; if (HasChain) { // If this intrinsic has side-effects, chainify it. if (OnlyLoad) { // We don't need to serialize loads against other loads. Ops.push_back(DAG.getRoot()); } else { Ops.push_back(getRoot()); } } // Add the intrinsic ID as an integer operand. Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); // Add all operands of the call to the operand list. for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { SDOperand Op = getValue(I.getOperand(i)); // If this is a vector type, force it to the right packed type. if (Op.getValueType() == MVT::Vector) { const PackedType *OpTy = cast(I.getOperand(i)->getType()); MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType()); MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements()); assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?"); Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op); } assert(TLI.isTypeLegal(Op.getValueType()) && "Intrinsic uses a non-legal type?"); Ops.push_back(Op); } std::vector VTs; if (I.getType() != Type::VoidTy) { MVT::ValueType VT = TLI.getValueType(I.getType()); if (VT == MVT::Vector) { const PackedType *DestTy = cast(I.getType()); MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType()); VT = MVT::getVectorType(EltVT, DestTy->getNumElements()); assert(VT != MVT::Other && "Intrinsic uses a non-legal type?"); } assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?"); VTs.push_back(VT); } if (HasChain) VTs.push_back(MVT::Other); // Create the node. SDOperand Result; if (!HasChain) Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTs, Ops); else if (I.getType() != Type::VoidTy) Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTs, Ops); else Result = DAG.getNode(ISD::INTRINSIC_VOID, VTs, Ops); if (HasChain) { SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1); if (OnlyLoad) PendingLoads.push_back(Chain); else DAG.setRoot(Chain); } if (I.getType() != Type::VoidTy) { if (const PackedType *PTy = dyn_cast(I.getType())) { MVT::ValueType EVT = TLI.getValueType(PTy->getElementType()); Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result, DAG.getConstant(PTy->getNumElements(), MVT::i32), DAG.getValueType(EVT)); } setValue(&I, Result); } } /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If /// we want to emit this as a call to a named external function, return the name /// otherwise lower it and return null. const char * SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { switch (Intrinsic) { default: // By default, turn this into a target intrinsic node. visitTargetIntrinsic(I, Intrinsic); return 0; case Intrinsic::vastart: visitVAStart(I); return 0; case Intrinsic::vaend: visitVAEnd(I); return 0; case Intrinsic::vacopy: visitVACopy(I); return 0; case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0; case Intrinsic::frameaddress: visitFrameReturnAddress(I, true); return 0; case Intrinsic::setjmp: return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp(); break; case Intrinsic::longjmp: return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp(); break; case Intrinsic::memcpy_i32: case Intrinsic::memcpy_i64: visitMemIntrinsic(I, ISD::MEMCPY); return 0; case Intrinsic::memset_i32: case Intrinsic::memset_i64: visitMemIntrinsic(I, ISD::MEMSET); return 0; case Intrinsic::memmove_i32: case Intrinsic::memmove_i64: visitMemIntrinsic(I, ISD::MEMMOVE); return 0; case Intrinsic::dbg_stoppoint: { MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo(); DbgStopPointInst &SPI = cast(I); if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) { std::vector Ops; Ops.push_back(getRoot()); Ops.push_back(getValue(SPI.getLineValue())); Ops.push_back(getValue(SPI.getColumnValue())); DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext()); assert(DD && "Not a debug information descriptor"); CompileUnitDesc *CompileUnit = cast(DD); Ops.push_back(DAG.getString(CompileUnit->getFileName())); Ops.push_back(DAG.getString(CompileUnit->getDirectory())); DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops)); } return 0; } case Intrinsic::dbg_region_start: { MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo(); DbgRegionStartInst &RSI = cast(I); if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) { std::vector Ops; unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext()); Ops.push_back(getRoot()); Ops.push_back(DAG.getConstant(LabelID, MVT::i32)); DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops)); } return 0; } case Intrinsic::dbg_region_end: { MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo(); DbgRegionEndInst &REI = cast(I); if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) { std::vector Ops; unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext()); Ops.push_back(getRoot()); Ops.push_back(DAG.getConstant(LabelID, MVT::i32)); DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops)); } return 0; } case Intrinsic::dbg_func_start: { MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo(); DbgFuncStartInst &FSI = cast(I); if (DebugInfo && FSI.getSubprogram() && DebugInfo->Verify(FSI.getSubprogram())) { std::vector Ops; unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram()); Ops.push_back(getRoot()); Ops.push_back(DAG.getConstant(LabelID, MVT::i32)); DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops)); } return 0; } case Intrinsic::dbg_declare: { MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo(); DbgDeclareInst &DI = cast(I); if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) { std::vector Ops; SDOperand AddressOp = getValue(DI.getAddress()); if (FrameIndexSDNode *FI = dyn_cast(AddressOp)) { DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex()); } } return 0; } case Intrinsic::isunordered_f32: case Intrinsic::isunordered_f64: setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)), getValue(I.getOperand(2)), ISD::SETUO)); return 0; case Intrinsic::sqrt_f32: case Intrinsic::sqrt_f64: setValue(&I, DAG.getNode(ISD::FSQRT, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::pcmarker: { SDOperand Tmp = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp)); return 0; } case Intrinsic::readcyclecounter: { std::vector VTs; VTs.push_back(MVT::i64); VTs.push_back(MVT::Other); std::vector Ops; Ops.push_back(getRoot()); SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops); setValue(&I, Tmp); DAG.setRoot(Tmp.getValue(1)); return 0; } case Intrinsic::bswap_i16: case Intrinsic::bswap_i32: case Intrinsic::bswap_i64: setValue(&I, DAG.getNode(ISD::BSWAP, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::cttz_i8: case Intrinsic::cttz_i16: case Intrinsic::cttz_i32: case Intrinsic::cttz_i64: setValue(&I, DAG.getNode(ISD::CTTZ, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::ctlz_i8: case Intrinsic::ctlz_i16: case Intrinsic::ctlz_i32: case Intrinsic::ctlz_i64: setValue(&I, DAG.getNode(ISD::CTLZ, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::ctpop_i8: case Intrinsic::ctpop_i16: case Intrinsic::ctpop_i32: case Intrinsic::ctpop_i64: setValue(&I, DAG.getNode(ISD::CTPOP, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::stacksave: { std::vector VTs; VTs.push_back(TLI.getPointerTy()); VTs.push_back(MVT::Other); std::vector Ops; Ops.push_back(getRoot()); SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops); setValue(&I, Tmp); DAG.setRoot(Tmp.getValue(1)); return 0; } case Intrinsic::stackrestore: { SDOperand Tmp = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp)); return 0; } case Intrinsic::prefetch: // FIXME: Currently discarding prefetches. return 0; } } void SelectionDAGLowering::visitCall(CallInst &I) { const char *RenameFn = 0; if (Function *F = I.getCalledFunction()) { if (F->isExternal()) if (unsigned IID = F->getIntrinsicID()) { RenameFn = visitIntrinsicCall(I, IID); if (!RenameFn) return; } else { // Not an LLVM intrinsic. const std::string &Name = F->getName(); if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) { if (I.getNumOperands() == 3 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType() && I.getType() == I.getOperand(2)->getType()) { SDOperand LHS = getValue(I.getOperand(1)); SDOperand RHS = getValue(I.getOperand(2)); setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(), LHS, RHS)); return; } } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType()) { SDOperand Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp)); return; } } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType()) { SDOperand Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp)); return; } } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType()) { SDOperand Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp)); return; } } } } else if (isa(I.getOperand(0))) { visitInlineAsm(I); return; } SDOperand Callee; if (!RenameFn) Callee = getValue(I.getOperand(0)); else Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); std::vector > Args; Args.reserve(I.getNumOperands()); for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { Value *Arg = I.getOperand(i); SDOperand ArgNode = getValue(Arg); Args.push_back(std::make_pair(ArgNode, Arg->getType())); } const PointerType *PT = cast(I.getCalledValue()->getType()); const FunctionType *FTy = cast(PT->getElementType()); std::pair Result = TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(), I.isTailCall(), Callee, Args, DAG); if (I.getType() != Type::VoidTy) setValue(&I, Result.first); DAG.setRoot(Result.second); } SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG, SDOperand &Chain, SDOperand &Flag)const{ SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag); Chain = Val.getValue(1); Flag = Val.getValue(2); // If the result was expanded, copy from the top part. if (Regs.size() > 1) { assert(Regs.size() == 2 && "Cannot expand to more than 2 elts yet!"); SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag); Chain = Val.getValue(1); Flag = Val.getValue(2); if (DAG.getTargetLoweringInfo().isLittleEndian()) return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi); else return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val); } // Otherwise, if the return value was promoted, truncate it to the // appropriate type. if (RegVT == ValueVT) return Val; if (MVT::isInteger(RegVT)) return DAG.getNode(ISD::TRUNCATE, ValueVT, Val); else return DAG.getNode(ISD::FP_ROUND, ValueVT, Val); } /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the /// specified value into the registers specified by this object. This uses /// Chain/Flag as the input and updates them for the output Chain/Flag. void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG, SDOperand &Chain, SDOperand &Flag) const { if (Regs.size() == 1) { // If there is a single register and the types differ, this must be // a promotion. if (RegVT != ValueVT) { if (MVT::isInteger(RegVT)) Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val); else Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val); } Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag); Flag = Chain.getValue(1); } else { std::vector R(Regs); if (!DAG.getTargetLoweringInfo().isLittleEndian()) std::reverse(R.begin(), R.end()); for (unsigned i = 0, e = R.size(); i != e; ++i) { SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val, DAG.getConstant(i, MVT::i32)); Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag); Flag = Chain.getValue(1); } } } /// AddInlineAsmOperands - Add this value to the specified inlineasm node /// operand list. This adds the code marker and includes the number of /// values added into it. void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, std::vector &Ops) const { Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32)); for (unsigned i = 0, e = Regs.size(); i != e; ++i) Ops.push_back(DAG.getRegister(Regs[i], RegVT)); } /// isAllocatableRegister - If the specified register is safe to allocate, /// i.e. it isn't a stack pointer or some other special register, return the /// register class for the register. Otherwise, return null. static const TargetRegisterClass * isAllocatableRegister(unsigned Reg, MachineFunction &MF, const TargetLowering &TLI, const MRegisterInfo *MRI) { MVT::ValueType FoundVT = MVT::Other; const TargetRegisterClass *FoundRC = 0; for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(), E = MRI->regclass_end(); RCI != E; ++RCI) { MVT::ValueType ThisVT = MVT::Other; const TargetRegisterClass *RC = *RCI; // If none of the the value types for this register class are valid, we // can't use it. For example, 64-bit reg classes on 32-bit targets. for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); I != E; ++I) { if (TLI.isTypeLegal(*I)) { // If we have already found this register in a different register class, // choose the one with the largest VT specified. For example, on // PowerPC, we favor f64 register classes over f32. if (FoundVT == MVT::Other || MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) { ThisVT = *I; break; } } } if (ThisVT == MVT::Other) continue; // NOTE: This isn't ideal. In particular, this might allocate the // frame pointer in functions that need it (due to them not being taken // out of allocation, because a variable sized allocation hasn't been seen // yet). This is a slight code pessimization, but should still work. for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), E = RC->allocation_order_end(MF); I != E; ++I) if (*I == Reg) { // We found a matching register class. Keep looking at others in case // we find one with larger registers that this physreg is also in. FoundRC = RC; FoundVT = ThisVT; break; } } return FoundRC; } RegsForValue SelectionDAGLowering:: GetRegistersForValue(const std::string &ConstrCode, MVT::ValueType VT, bool isOutReg, bool isInReg, std::set &OutputRegs, std::set &InputRegs) { std::pair PhysReg = TLI.getRegForInlineAsmConstraint(ConstrCode, VT); std::vector Regs; unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1; MVT::ValueType RegVT; MVT::ValueType ValueVT = VT; if (PhysReg.first) { if (VT == MVT::Other) ValueVT = *PhysReg.second->vt_begin(); RegVT = VT; // This is a explicit reference to a physical register. Regs.push_back(PhysReg.first); // If this is an expanded reference, add the rest of the regs to Regs. if (NumRegs != 1) { RegVT = *PhysReg.second->vt_begin(); TargetRegisterClass::iterator I = PhysReg.second->begin(); TargetRegisterClass::iterator E = PhysReg.second->end(); for (; *I != PhysReg.first; ++I) assert(I != E && "Didn't find reg!"); // Already added the first reg. --NumRegs; ++I; for (; NumRegs; --NumRegs, ++I) { assert(I != E && "Ran out of registers to allocate!"); Regs.push_back(*I); } } return RegsForValue(Regs, RegVT, ValueVT); } // This is a reference to a register class. Allocate NumRegs consecutive, // available, registers from the class. std::vector RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT); const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo(); MachineFunction &MF = *CurMBB->getParent(); unsigned NumAllocated = 0; for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { unsigned Reg = RegClassRegs[i]; // See if this register is available. if ((isOutReg && OutputRegs.count(Reg)) || // Already used. (isInReg && InputRegs.count(Reg))) { // Already used. // Make sure we find consecutive registers. NumAllocated = 0; continue; } // Check to see if this register is allocatable (i.e. don't give out the // stack pointer). const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI); if (!RC) { // Make sure we find consecutive registers. NumAllocated = 0; continue; } // Okay, this register is good, we can use it. ++NumAllocated; // If we allocated enough consecutive if (NumAllocated == NumRegs) { unsigned RegStart = (i-NumAllocated)+1; unsigned RegEnd = i+1; // Mark all of the allocated registers used. for (unsigned i = RegStart; i != RegEnd; ++i) { unsigned Reg = RegClassRegs[i]; Regs.push_back(Reg); if (isOutReg) OutputRegs.insert(Reg); // Mark reg used. if (isInReg) InputRegs.insert(Reg); // Mark reg used. } return RegsForValue(Regs, *RC->vt_begin(), VT); } } // Otherwise, we couldn't allocate enough registers for this. return RegsForValue(); } /// visitInlineAsm - Handle a call to an InlineAsm object. /// void SelectionDAGLowering::visitInlineAsm(CallInst &I) { InlineAsm *IA = cast(I.getOperand(0)); SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other); // Note, we treat inline asms both with and without side-effects as the same. // If an inline asm doesn't have side effects and doesn't access memory, we // could not choose to not chain it. bool hasSideEffects = IA->hasSideEffects(); std::vector Constraints = IA->ParseConstraints(); std::vector ConstraintVTs; /// AsmNodeOperands - A list of pairs. The first element is a register, the /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set /// if it is a def of that register. std::vector AsmNodeOperands; AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain AsmNodeOperands.push_back(AsmStr); SDOperand Chain = getRoot(); SDOperand Flag; // We fully assign registers here at isel time. This is not optimal, but // should work. For register classes that correspond to LLVM classes, we // could let the LLVM RA do its thing, but we currently don't. Do a prepass // over the constraints, collecting fixed registers that we know we can't use. std::set OutputRegs, InputRegs; unsigned OpNum = 1; for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!"); std::string &ConstraintCode = Constraints[i].Codes[0]; MVT::ValueType OpVT; // Compute the value type for each operand and add it to ConstraintVTs. switch (Constraints[i].Type) { case InlineAsm::isOutput: if (!Constraints[i].isIndirectOutput) { assert(I.getType() != Type::VoidTy && "Bad inline asm!"); OpVT = TLI.getValueType(I.getType()); } else { const Type *OpTy = I.getOperand(OpNum)->getType(); OpVT = TLI.getValueType(cast(OpTy)->getElementType()); OpNum++; // Consumes a call operand. } break; case InlineAsm::isInput: OpVT = TLI.getValueType(I.getOperand(OpNum)->getType()); OpNum++; // Consumes a call operand. break; case InlineAsm::isClobber: OpVT = MVT::Other; break; } ConstraintVTs.push_back(OpVT); if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0) continue; // Not assigned a fixed reg. // Build a list of regs that this operand uses. This always has a single // element for promoted/expanded operands. RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT, false, false, OutputRegs, InputRegs); switch (Constraints[i].Type) { case InlineAsm::isOutput: // We can't assign any other output to this register. OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); // If this is an early-clobber output, it cannot be assigned to the same // value as the input reg. if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput) InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); break; case InlineAsm::isInput: // We can't assign any other input to this register. InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); break; case InlineAsm::isClobber: // Clobbered regs cannot be used as inputs or outputs. InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); break; } } // Loop over all of the inputs, copying the operand values into the // appropriate registers and processing the output regs. RegsForValue RetValRegs; std::vector > IndirectStoresToEmit; OpNum = 1; for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!"); std::string &ConstraintCode = Constraints[i].Codes[0]; switch (Constraints[i].Type) { case InlineAsm::isOutput: { TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass; if (ConstraintCode.size() == 1) // not a physreg name. CTy = TLI.getConstraintType(ConstraintCode[0]); if (CTy == TargetLowering::C_Memory) { // Memory output. SDOperand InOperandVal = getValue(I.getOperand(OpNum)); // Check that the operand (the address to store to) isn't a float. if (!MVT::isInteger(InOperandVal.getValueType())) assert(0 && "MATCH FAIL!"); if (!Constraints[i].isIndirectOutput) assert(0 && "MATCH FAIL!"); OpNum++; // Consumes a call operand. // Extend/truncate to the right pointer type if needed. MVT::ValueType PtrType = TLI.getPointerTy(); if (InOperandVal.getValueType() < PtrType) InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal); else if (InOperandVal.getValueType() > PtrType) InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal); // Add information to the INLINEASM node to know about this output. unsigned ResOpType = 4/*MEM*/ | (1 << 3); AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32)); AsmNodeOperands.push_back(InOperandVal); break; } // Otherwise, this is a register output. assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!"); // If this is an early-clobber output, or if there is an input // constraint that matches this, we need to reserve the input register // so no other inputs allocate to it. bool UsesInputRegister = false; if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput) UsesInputRegister = true; // Copy the output from the appropriate register. Find a register that // we can use. RegsForValue Regs = GetRegistersForValue(ConstraintCode, ConstraintVTs[i], true, UsesInputRegister, OutputRegs, InputRegs); assert(!Regs.Regs.empty() && "Couldn't allocate output reg!"); if (!Constraints[i].isIndirectOutput) { assert(RetValRegs.Regs.empty() && "Cannot have multiple output constraints yet!"); assert(I.getType() != Type::VoidTy && "Bad inline asm!"); RetValRegs = Regs; } else { IndirectStoresToEmit.push_back(std::make_pair(Regs, I.getOperand(OpNum))); OpNum++; // Consumes a call operand. } // Add information to the INLINEASM node to know that this register is // set. Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands); break; } case InlineAsm::isInput: { SDOperand InOperandVal = getValue(I.getOperand(OpNum)); OpNum++; // Consumes a call operand. if (isdigit(ConstraintCode[0])) { // Matching constraint? // If this is required to match an output register we have already set, // just use its register. unsigned OperandNo = atoi(ConstraintCode.c_str()); // Scan until we find the definition we already emitted of this operand. // When we find it, create a RegsForValue operand. unsigned CurOp = 2; // The first operand. for (; OperandNo; --OperandNo) { // Advance to the next operand. unsigned NumOps = cast(AsmNodeOperands[CurOp])->getValue(); assert((NumOps & 7) == 2 /*REGDEF*/ && "Skipped past definitions?"); CurOp += (NumOps>>3)+1; } unsigned NumOps = cast(AsmNodeOperands[CurOp])->getValue(); assert((NumOps & 7) == 2 /*REGDEF*/ && "Skipped past definitions?"); // Add NumOps>>3 registers to MatchedRegs. RegsForValue MatchedRegs; MatchedRegs.ValueVT = InOperandVal.getValueType(); MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType(); for (unsigned i = 0, e = NumOps>>3; i != e; ++i) { unsigned Reg=cast(AsmNodeOperands[++CurOp])->getReg(); MatchedRegs.Regs.push_back(Reg); } // Use the produced MatchedRegs object to MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag); MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands); break; } TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass; if (ConstraintCode.size() == 1) // not a physreg name. CTy = TLI.getConstraintType(ConstraintCode[0]); if (CTy == TargetLowering::C_Other) { if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0])) assert(0 && "MATCH FAIL!"); // Add information to the INLINEASM node to know about this input. unsigned ResOpType = 3 /*IMM*/ | (1 << 3); AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32)); AsmNodeOperands.push_back(InOperandVal); break; } else if (CTy == TargetLowering::C_Memory) { // Memory input. // Check that the operand isn't a float. if (!MVT::isInteger(InOperandVal.getValueType())) assert(0 && "MATCH FAIL!"); // Extend/truncate to the right pointer type if needed. MVT::ValueType PtrType = TLI.getPointerTy(); if (InOperandVal.getValueType() < PtrType) InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal); else if (InOperandVal.getValueType() > PtrType) InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal); // Add information to the INLINEASM node to know about this input. unsigned ResOpType = 4/*MEM*/ | (1 << 3); AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32)); AsmNodeOperands.push_back(InOperandVal); break; } assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!"); // Copy the input into the appropriate registers. RegsForValue InRegs = GetRegistersForValue(ConstraintCode, ConstraintVTs[i], false, true, OutputRegs, InputRegs); // FIXME: should be match fail. assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!"); InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag); InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands); break; } case InlineAsm::isClobber: { RegsForValue ClobberedRegs = GetRegistersForValue(ConstraintCode, MVT::Other, false, false, OutputRegs, InputRegs); // Add the clobbered value to the operand list, so that the register // allocator is aware that the physreg got clobbered. if (!ClobberedRegs.Regs.empty()) ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands); break; } } } // Finish up input operands. AsmNodeOperands[0] = Chain; if (Flag.Val) AsmNodeOperands.push_back(Flag); std::vector VTs; VTs.push_back(MVT::Other); VTs.push_back(MVT::Flag); Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands); Flag = Chain.getValue(1); // If this asm returns a register value, copy the result from that register // and set it as the value of the call. if (!RetValRegs.Regs.empty()) setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag)); std::vector > StoresToEmit; // Process indirect outputs, first output all of the flagged copies out of // physregs. for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { RegsForValue &OutRegs = IndirectStoresToEmit[i].first; Value *Ptr = IndirectStoresToEmit[i].second; SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag); StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); } // Emit the non-flagged stores from the physregs. std::vector OutChains; for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, StoresToEmit[i].first, getValue(StoresToEmit[i].second), DAG.getSrcValue(StoresToEmit[i].second))); if (!OutChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains); DAG.setRoot(Chain); } void SelectionDAGLowering::visitMalloc(MallocInst &I) { SDOperand Src = getValue(I.getOperand(0)); MVT::ValueType IntPtr = TLI.getPointerTy(); if (IntPtr < Src.getValueType()) Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src); else if (IntPtr > Src.getValueType()) Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src); // Scale the source by the type size. uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType()); Src = DAG.getNode(ISD::MUL, Src.getValueType(), Src, getIntPtrConstant(ElementSize)); std::vector > Args; Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType())); std::pair Result = TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG); setValue(&I, Result.first); // Pointers always fit in registers DAG.setRoot(Result.second); } void SelectionDAGLowering::visitFree(FreeInst &I) { std::vector > Args; Args.push_back(std::make_pair(getValue(I.getOperand(0)), TLI.getTargetData()->getIntPtrType())); MVT::ValueType IntPtr = TLI.getPointerTy(); std::pair Result = TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true, DAG.getExternalSymbol("free", IntPtr), Args, DAG); DAG.setRoot(Result.second); } // InsertAtEndOfBasicBlock - This method should be implemented by targets that // mark instructions with the 'usesCustomDAGSchedInserter' flag. These // instructions are special in various ways, which require special support to // insert. The specified MachineInstr is created but not inserted into any // basic blocks, and the scheduler passes ownership of it to this method. MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *MBB) { std::cerr << "If a target marks an instruction with " "'usesCustomDAGSchedInserter', it must implement " "TargetLowering::InsertAtEndOfBasicBlock!\n"; abort(); return 0; } void SelectionDAGLowering::visitVAStart(CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), getValue(I.getOperand(1)), DAG.getSrcValue(I.getOperand(1)))); } void SelectionDAGLowering::visitVAArg(VAArgInst &I) { SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0))); setValue(&I, V); DAG.setRoot(V.getValue(1)); } void SelectionDAGLowering::visitVAEnd(CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(), getValue(I.getOperand(1)), DAG.getSrcValue(I.getOperand(1)))); } void SelectionDAGLowering::visitVACopy(CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), getValue(I.getOperand(1)), getValue(I.getOperand(2)), DAG.getSrcValue(I.getOperand(1)), DAG.getSrcValue(I.getOperand(2)))); } /// TargetLowering::LowerArguments - This is the default LowerArguments /// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all /// targets are migrated to using FORMAL_ARGUMENTS, this hook should be /// integrated into SDISel. std::vector TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node. std::vector Ops; Ops.push_back(DAG.getRoot()); Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy())); Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy())); // Add one result value for each formal argument. std::vector RetVals; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { MVT::ValueType VT = getValueType(I->getType()); switch (getTypeAction(VT)) { default: assert(0 && "Unknown type action!"); case Legal: RetVals.push_back(VT); break; case Promote: RetVals.push_back(getTypeToTransformTo(VT)); break; case Expand: if (VT != MVT::Vector) { // If this is a large integer, it needs to be broken up into small // integers. Figure out what the destination type is and how many small // integers it turns into. MVT::ValueType NVT = getTypeToTransformTo(VT); unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT); for (unsigned i = 0; i != NumVals; ++i) RetVals.push_back(NVT); } else { // Otherwise, this is a vector type. We only support legal vectors // right now. unsigned NumElems = cast(I->getType())->getNumElements(); const Type *EltTy = cast(I->getType())->getElementType(); // Figure out if there is a Packed type corresponding to this Vector // type. If so, convert to the packed type. MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems); if (TVT != MVT::Other && isTypeLegal(TVT)) { RetVals.push_back(TVT); } else { assert(0 && "Don't support illegal by-val vector arguments yet!"); } } break; } } RetVals.push_back(MVT::Other); // Create the node. SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, RetVals, Ops).Val; DAG.setRoot(SDOperand(Result, Result->getNumValues()-1)); // Set up the return result vector. Ops.clear(); unsigned i = 0; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { MVT::ValueType VT = getValueType(I->getType()); switch (getTypeAction(VT)) { default: assert(0 && "Unknown type action!"); case Legal: Ops.push_back(SDOperand(Result, i++)); break; case Promote: { SDOperand Op(Result, i++); if (MVT::isInteger(VT)) { unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext : ISD::AssertZext; Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT)); Op = DAG.getNode(ISD::TRUNCATE, VT, Op); } else { assert(MVT::isFloatingPoint(VT) && "Not int or FP?"); Op = DAG.getNode(ISD::FP_ROUND, VT, Op); } Ops.push_back(Op); break; } case Expand: if (VT != MVT::Vector) { // If this is a large integer, it needs to be reassembled from small // integers. Figure out what the source elt type is and how many small // integers it is. MVT::ValueType NVT = getTypeToTransformTo(VT); unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT); if (NumVals == 2) { SDOperand Lo = SDOperand(Result, i++); SDOperand Hi = SDOperand(Result, i++); if (!isLittleEndian()) std::swap(Lo, Hi); Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi)); } else { // Value scalarized into many values. Unimp for now. assert(0 && "Cannot expand i64 -> i16 yet!"); } } else { // Otherwise, this is a vector type. We only support legal vectors // right now. const PackedType *PTy = cast(I->getType()); unsigned NumElems = PTy->getNumElements(); const Type *EltTy = PTy->getElementType(); // Figure out if there is a Packed type corresponding to this Vector // type. If so, convert to the packed type. MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems); if (TVT != MVT::Other && isTypeLegal(TVT)) { SDOperand N = SDOperand(Result, i++); // Handle copies from generic vectors to registers. N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N, DAG.getConstant(NumElems, MVT::i32), DAG.getValueType(getValueType(EltTy))); Ops.push_back(N); } else { assert(0 && "Don't support illegal by-val vector arguments yet!"); abort(); } } break; } } return Ops; } /// TargetLowering::LowerCallTo - This is the default LowerCallTo /// implementation, which just inserts an ISD::CALL node, which is later custom /// lowered by the target to something concrete. FIXME: When all targets are /// migrated to using ISD::CALL, this hook should be integrated into SDISel. std::pair TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CallingConv, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { std::vector Ops; Ops.push_back(Chain); // Op#0 - Chain Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail Ops.push_back(Callee); // Handle all of the outgoing arguments. for (unsigned i = 0, e = Args.size(); i != e; ++i) { MVT::ValueType VT = getValueType(Args[i].second); SDOperand Op = Args[i].first; switch (getTypeAction(VT)) { default: assert(0 && "Unknown type action!"); case Legal: Ops.push_back(Op); break; case Promote: if (MVT::isInteger(VT)) { unsigned ExtOp = Args[i].second->isSigned() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op); } else { assert(MVT::isFloatingPoint(VT) && "Not int or FP?"); Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op); } Ops.push_back(Op); break; case Expand: if (VT != MVT::Vector) { // If this is a large integer, it needs to be broken down into small // integers. Figure out what the source elt type is and how many small // integers it is. MVT::ValueType NVT = getTypeToTransformTo(VT); unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT); if (NumVals == 2) { SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op, DAG.getConstant(0, getPointerTy())); SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op, DAG.getConstant(1, getPointerTy())); if (!isLittleEndian()) std::swap(Lo, Hi); Ops.push_back(Lo); Ops.push_back(Hi); } else { // Value scalarized into many values. Unimp for now. assert(0 && "Cannot expand i64 -> i16 yet!"); } } else { // Otherwise, this is a vector type. We only support legal vectors // right now. const PackedType *PTy = cast(Args[i].second); unsigned NumElems = PTy->getNumElements(); const Type *EltTy = PTy->getElementType(); // Figure out if there is a Packed type corresponding to this Vector // type. If so, convert to the packed type. MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems); if (TVT != MVT::Other && isTypeLegal(TVT)) { // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type. Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op); Ops.push_back(Op); } else { assert(0 && "Don't support illegal by-val vector call args yet!"); abort(); } } break; } } // Figure out the result value types. std::vector RetTys; if (RetTy != Type::VoidTy) { MVT::ValueType VT = getValueType(RetTy); switch (getTypeAction(VT)) { default: assert(0 && "Unknown type action!"); case Legal: RetTys.push_back(VT); break; case Promote: RetTys.push_back(getTypeToTransformTo(VT)); break; case Expand: if (VT != MVT::Vector) { // If this is a large integer, it needs to be reassembled from small // integers. Figure out what the source elt type is and how many small // integers it is. MVT::ValueType NVT = getTypeToTransformTo(VT); unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT); for (unsigned i = 0; i != NumVals; ++i) RetTys.push_back(NVT); } else { // Otherwise, this is a vector type. We only support legal vectors // right now. const PackedType *PTy = cast(RetTy); unsigned NumElems = PTy->getNumElements(); const Type *EltTy = PTy->getElementType(); // Figure out if there is a Packed type corresponding to this Vector // type. If so, convert to the packed type. MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems); if (TVT != MVT::Other && isTypeLegal(TVT)) { RetTys.push_back(TVT); } else { assert(0 && "Don't support illegal by-val vector call results yet!"); abort(); } } } } RetTys.push_back(MVT::Other); // Always has a chain. // Finally, create the CALL node. SDOperand Res = DAG.getNode(ISD::CALL, RetTys, Ops); // This returns a pair of operands. The first element is the // return value for the function (if RetTy is not VoidTy). The second // element is the outgoing token chain. SDOperand ResVal; if (RetTys.size() != 1) { MVT::ValueType VT = getValueType(RetTy); if (RetTys.size() == 2) { ResVal = Res; // If this value was promoted, truncate it down. if (ResVal.getValueType() != VT) { if (VT == MVT::Vector) { // Insert a VBITCONVERT to convert from the packed result type to the // MVT::Vector type. unsigned NumElems = cast(RetTy)->getNumElements(); const Type *EltTy = cast(RetTy)->getElementType(); // Figure out if there is a Packed type corresponding to this Vector // type. If so, convert to the packed type. MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems); if (TVT != MVT::Other && isTypeLegal(TVT)) { // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a // "N x PTyElementVT" MVT::Vector type. ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal, DAG.getConstant(NumElems, MVT::i32), DAG.getValueType(getValueType(EltTy))); } else { abort(); } } else if (MVT::isInteger(VT)) { unsigned AssertOp = RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext; ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal, DAG.getValueType(VT)); ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal); } else { assert(MVT::isFloatingPoint(VT)); ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal); } } } else if (RetTys.size() == 3) { ResVal = DAG.getNode(ISD::BUILD_PAIR, VT, Res.getValue(0), Res.getValue(1)); } else { assert(0 && "Case not handled yet!"); } } return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1)); } // It is always conservatively correct for llvm.returnaddress and // llvm.frameaddress to return 0. // // FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be // expanded to 0 if the target wants. std::pair TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, SelectionDAG &DAG) { return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain); } SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { assert(0 && "LowerOperation not implemented for this target!"); abort(); return SDOperand(); } SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG) { assert(0 && "CustomPromoteOperation not implemented for this target!"); abort(); return SDOperand(); } void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) { unsigned Depth = (unsigned)cast(I.getOperand(1))->getValue(); std::pair Result = TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG); setValue(&I, Result.first); DAG.setRoot(Result.second); } /// getMemsetValue - Vectorized representation of the memset value /// operand. static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT, SelectionDAG &DAG) { MVT::ValueType CurVT = VT; if (ConstantSDNode *C = dyn_cast(Value)) { uint64_t Val = C->getValue() & 255; unsigned Shift = 8; while (CurVT != MVT::i8) { Val = (Val << Shift) | Val; Shift <<= 1; CurVT = (MVT::ValueType)((unsigned)CurVT - 1); } return DAG.getConstant(Val, VT); } else { Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value); unsigned Shift = 8; while (CurVT != MVT::i8) { Value = DAG.getNode(ISD::OR, VT, DAG.getNode(ISD::SHL, VT, Value, DAG.getConstant(Shift, MVT::i8)), Value); Shift <<= 1; CurVT = (MVT::ValueType)((unsigned)CurVT - 1); } return Value; } } /// getMemsetStringVal - Similar to getMemsetValue. Except this is only /// used when a memcpy is turned into a memset when the source is a constant /// string ptr. static SDOperand getMemsetStringVal(MVT::ValueType VT, SelectionDAG &DAG, TargetLowering &TLI, std::string &Str, unsigned Offset) { MVT::ValueType CurVT = VT; uint64_t Val = 0; unsigned MSB = getSizeInBits(VT) / 8; if (TLI.isLittleEndian()) Offset = Offset + MSB - 1; for (unsigned i = 0; i != MSB; ++i) { Val = (Val << 8) | Str[Offset]; Offset += TLI.isLittleEndian() ? -1 : 1; } return DAG.getConstant(Val, VT); } /// getMemBasePlusOffset - Returns base and offset node for the static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset, SelectionDAG &DAG, TargetLowering &TLI) { MVT::ValueType VT = Base.getValueType(); return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT)); } /// MeetsMaxMemopRequirement - Determines if the number of memory ops required /// to replace the memset / memcpy is below the threshold. It also returns the /// types of the sequence of memory ops to perform memset / memcpy. static bool MeetsMaxMemopRequirement(std::vector &MemOps, unsigned Limit, uint64_t Size, unsigned Align, TargetLowering &TLI) { MVT::ValueType VT; if (TLI.allowsUnalignedMemoryAccesses()) { VT = MVT::i64; } else { switch (Align & 7) { case 0: VT = MVT::i64; break; case 4: VT = MVT::i32; break; case 2: VT = MVT::i16; break; default: VT = MVT::i8; break; } } MVT::ValueType LVT = MVT::i64; while (!TLI.isTypeLegal(LVT)) LVT = (MVT::ValueType)((unsigned)LVT - 1); assert(MVT::isInteger(LVT)); if (VT > LVT) VT = LVT; unsigned NumMemOps = 0; while (Size != 0) { unsigned VTSize = getSizeInBits(VT) / 8; while (VTSize > Size) { VT = (MVT::ValueType)((unsigned)VT - 1); VTSize >>= 1; } assert(MVT::isInteger(VT)); if (++NumMemOps > Limit) return false; MemOps.push_back(VT); Size -= VTSize; } return true; } void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) { SDOperand Op1 = getValue(I.getOperand(1)); SDOperand Op2 = getValue(I.getOperand(2)); SDOperand Op3 = getValue(I.getOperand(3)); SDOperand Op4 = getValue(I.getOperand(4)); unsigned Align = (unsigned)cast(Op4)->getValue(); if (Align == 0) Align = 1; if (ConstantSDNode *Size = dyn_cast(Op3)) { std::vector MemOps; // Expand memset / memcpy to a series of load / store ops // if the size operand falls below a certain threshold. std::vector OutChains; switch (Op) { default: break; // Do nothing for now. case ISD::MEMSET: { if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(), Size->getValue(), Align, TLI)) { unsigned NumMemOps = MemOps.size(); unsigned Offset = 0; for (unsigned i = 0; i < NumMemOps; i++) { MVT::ValueType VT = MemOps[i]; unsigned VTSize = getSizeInBits(VT) / 8; SDOperand Value = getMemsetValue(Op2, VT, DAG); SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Value, getMemBasePlusOffset(Op1, Offset, DAG, TLI), DAG.getSrcValue(I.getOperand(1), Offset)); OutChains.push_back(Store); Offset += VTSize; } } break; } case ISD::MEMCPY: { if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(), Size->getValue(), Align, TLI)) { unsigned NumMemOps = MemOps.size(); unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0; GlobalAddressSDNode *G = NULL; std::string Str; bool CopyFromStr = false; if (Op2.getOpcode() == ISD::GlobalAddress) G = cast(Op2); else if (Op2.getOpcode() == ISD::ADD && Op2.getOperand(0).getOpcode() == ISD::GlobalAddress && Op2.getOperand(1).getOpcode() == ISD::Constant) { G = cast(Op2.getOperand(0)); SrcDelta = cast(Op2.getOperand(1))->getValue(); } if (G) { GlobalVariable *GV = dyn_cast(G->getGlobal()); if (GV) { Str = GV->getStringValue(false); if (!Str.empty()) { CopyFromStr = true; SrcOff += SrcDelta; } } } for (unsigned i = 0; i < NumMemOps; i++) { MVT::ValueType VT = MemOps[i]; unsigned VTSize = getSizeInBits(VT) / 8; SDOperand Value, Chain, Store; if (CopyFromStr) { Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff); Chain = getRoot(); Store = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, getMemBasePlusOffset(Op1, DstOff, DAG, TLI), DAG.getSrcValue(I.getOperand(1), DstOff)); } else { Value = DAG.getLoad(VT, getRoot(), getMemBasePlusOffset(Op2, SrcOff, DAG, TLI), DAG.getSrcValue(I.getOperand(2), SrcOff)); Chain = Value.getValue(1); Store = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, getMemBasePlusOffset(Op1, DstOff, DAG, TLI), DAG.getSrcValue(I.getOperand(1), DstOff)); } OutChains.push_back(Store); SrcOff += VTSize; DstOff += VTSize; } } break; } } if (!OutChains.empty()) { DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains)); return; } } std::vector Ops; Ops.push_back(getRoot()); Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops)); } //===----------------------------------------------------------------------===// // SelectionDAGISel code //===----------------------------------------------------------------------===// unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) { return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); } void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { // FIXME: we only modify the CFG to split critical edges. This // updates dom and loop info. } /// OptimizeNoopCopyExpression - We have determined that the specified cast /// instruction is a noop copy (e.g. it's casting from one pointer type to /// another, int->uint, or int->sbyte on PPC. /// /// Return true if any changes are made. static bool OptimizeNoopCopyExpression(CastInst *CI) { BasicBlock *DefBB = CI->getParent(); /// InsertedCasts - Only insert a cast in each block once. std::map InsertedCasts; bool MadeChange = false; for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Figure out which BB this cast is used in. For PHI's this is the // appropriate predecessor block. BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast(User)) { unsigned OpVal = UI.getOperandNo()/2; UserBB = PN->getIncomingBlock(OpVal); } // Preincrement use iterator so we don't invalidate it. ++UI; // If this user is in the same block as the cast, don't change the cast. if (UserBB == DefBB) continue; // If we have already inserted a cast into this block, use it. CastInst *&InsertedCast = InsertedCasts[UserBB]; if (!InsertedCast) { BasicBlock::iterator InsertPt = UserBB->begin(); while (isa(InsertPt)) ++InsertPt; InsertedCast = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt); MadeChange = true; } // Replace a use of the cast with a use of the new casat. TheUse = InsertedCast; } // If we removed all uses, nuke the cast. if (CI->use_empty()) CI->eraseFromParent(); return MadeChange; } /// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset, /// casting to the type of GEPI. static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB, Instruction *GEPI, Value *Ptr, Value *PtrOffset) { if (V) return V; // Already computed. BasicBlock::iterator InsertPt; if (BB == GEPI->getParent()) { // If insert into the GEP's block, insert right after the GEP. InsertPt = GEPI; ++InsertPt; } else { // Otherwise, insert at the top of BB, after any PHI nodes InsertPt = BB->begin(); while (isa(InsertPt)) ++InsertPt; } // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into // BB so that there is only one value live across basic blocks (the cast // operand). if (CastInst *CI = dyn_cast(Ptr)) if (CI->getParent() != BB && isa(CI->getOperand(0)->getType())) Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt); // Add the offset, cast it to the right type. Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt); return V = new CastInst(Ptr, GEPI->getType(), "", InsertPt); } /// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to /// compute its value. The RepPtr value can be computed with Ptr+PtrOffset. One /// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's /// block, then ReplaceAllUsesWith'ing everything. However, we would prefer to /// sink PtrOffset into user blocks where doing so will likely allow us to fold /// the constant add into a load or store instruction. Additionally, if a user /// is a pointer-pointer cast, we look through it to find its users. static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr, Constant *PtrOffset, BasicBlock *DefBB, GetElementPtrInst *GEPI, std::map &InsertedExprs) { while (!RepPtr->use_empty()) { Instruction *User = cast(RepPtr->use_back()); // If the user is a Pointer-Pointer cast, recurse. if (isa(User) && isa(User->getType())) { ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs); // Drop the use of RepPtr. The cast is dead. Don't delete it now, else we // could invalidate an iterator. User->setOperand(0, UndefValue::get(RepPtr->getType())); continue; } // If this is a load of the pointer, or a store through the pointer, emit // the increment into the load/store block. Instruction *NewVal; if (isa(User) || (isa(User) && User->getOperand(0) != RepPtr)) { NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()], User->getParent(), GEPI, Ptr, PtrOffset); } else { // If this use is not foldable into the addressing mode, use a version // emitted in the GEP block. NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI, Ptr, PtrOffset); } if (GEPI->getType() != RepPtr->getType()) { BasicBlock::iterator IP = NewVal; ++IP; NewVal = new CastInst(NewVal, RepPtr->getType(), "", IP); } User->replaceUsesOfWith(RepPtr, NewVal); } } /// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction /// selection, we want to be a bit careful about some things. In particular, if /// we have a GEP instruction that is used in a different block than it is /// defined, the addressing expression of the GEP cannot be folded into loads or /// stores that use it. In this case, decompose the GEP and move constant /// indices into blocks that use it. static bool OptimizeGEPExpression(GetElementPtrInst *GEPI, const TargetData *TD) { // If this GEP is only used inside the block it is defined in, there is no // need to rewrite it. bool isUsedOutsideDefBB = false; BasicBlock *DefBB = GEPI->getParent(); for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end(); UI != E; ++UI) { if (cast(*UI)->getParent() != DefBB) { isUsedOutsideDefBB = true; break; } } if (!isUsedOutsideDefBB) return false; // If this GEP has no non-zero constant indices, there is nothing we can do, // ignore it. bool hasConstantIndex = false; bool hasVariableIndex = false; for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1, E = GEPI->op_end(); OI != E; ++OI) { if (ConstantInt *CI = dyn_cast(*OI)) { if (CI->getRawValue()) { hasConstantIndex = true; break; } } else { hasVariableIndex = true; } } // If this is a "GEP X, 0, 0, 0", turn this into a cast. if (!hasConstantIndex && !hasVariableIndex) { Value *NC = new CastInst(GEPI->getOperand(0), GEPI->getType(), GEPI->getName(), GEPI); GEPI->replaceAllUsesWith(NC); GEPI->eraseFromParent(); return true; } // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses. if (!hasConstantIndex && !isa(GEPI->getOperand(0))) return false; // Otherwise, decompose the GEP instruction into multiplies and adds. Sum the // constant offset (which we now know is non-zero) and deal with it later. uint64_t ConstantOffset = 0; const Type *UIntPtrTy = TD->getIntPtrType(); Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI); const Type *Ty = GEPI->getOperand(0)->getType(); for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1, E = GEPI->op_end(); OI != E; ++OI) { Value *Idx = *OI; if (const StructType *StTy = dyn_cast(Ty)) { unsigned Field = cast(Idx)->getValue(); if (Field) ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field]; Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); // Handle constant subscripts. if (ConstantInt *CI = dyn_cast(Idx)) { if (CI->getRawValue() == 0) continue; if (ConstantSInt *CSI = dyn_cast(CI)) ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CSI->getValue(); else ConstantOffset+=TD->getTypeSize(Ty)*cast(CI)->getValue(); continue; } // Ptr = Ptr + Idx * ElementSize; // Cast Idx to UIntPtrTy if needed. Idx = new CastInst(Idx, UIntPtrTy, "", GEPI); uint64_t ElementSize = TD->getTypeSize(Ty); // Mask off bits that should not be set. ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits()); Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize); // Multiply by the element size and add to the base. Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI); Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI); } } // Make sure that the offset fits in uintptr_t. ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits()); Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset); // Okay, we have now emitted all of the variable index parts to the BB that // the GEP is defined in. Loop over all of the using instructions, inserting // an "add Ptr, ConstantOffset" into each block that uses it and update the // instruction to use the newly computed value, making GEPI dead. When the // user is a load or store instruction address, we emit the add into the user // block, otherwise we use a canonical version right next to the gep (these // won't be foldable as addresses, so we might as well share the computation). std::map InsertedExprs; ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs); // Finally, the GEP is dead, remove it. GEPI->eraseFromParent(); return true; } bool SelectionDAGISel::runOnFunction(Function &Fn) { MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine()); RegMap = MF.getSSARegMap(); DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n"); // First, split all critical edges for PHI nodes with incoming values that are // constants, this way the load of the constant into a vreg will not be placed // into MBBs that are used some other way. // // In this pass we also look for GEP and cast instructions that are used // across basic blocks and rewrite them to improve basic-block-at-a-time // selection. // // bool MadeChange = true; while (MadeChange) { MadeChange = false; for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { PHINode *PN; BasicBlock::iterator BBI; for (BBI = BB->begin(); (PN = dyn_cast(BBI)); ++BBI) for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (isa(PN->getIncomingValue(i))) SplitCriticalEdge(PN->getIncomingBlock(i), BB); for (BasicBlock::iterator E = BB->end(); BBI != E; ) { Instruction *I = BBI++; if (GetElementPtrInst *GEPI = dyn_cast(I)) { MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData()); } else if (CastInst *CI = dyn_cast(I)) { // If this is a noop copy, sink it into user blocks to reduce the number // of virtual registers that must be created and coallesced. MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); MVT::ValueType DstVT = TLI.getValueType(CI->getType()); // This is an fp<->int conversion? if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT)) continue; // If this is an extension, it will be a zero or sign extension, which // isn't a noop. if (SrcVT < DstVT) continue; // If these values will be promoted, find out what they will be promoted // to. This helps us consider truncates on PPC as noop copies when they // are. if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) SrcVT = TLI.getTypeToTransformTo(SrcVT); if (TLI.getTypeAction(DstVT) == TargetLowering::Promote) DstVT = TLI.getTypeToTransformTo(DstVT); // If, after promotion, these are the same types, this is a noop copy. if (SrcVT == DstVT) MadeChange |= OptimizeNoopCopyExpression(CI); } } } } FunctionLoweringInfo FuncInfo(TLI, Fn, MF); for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) SelectBasicBlock(I, MF, FuncInfo); return true; } SDOperand SelectionDAGISel:: CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) { SDOperand Op = SDL.getValue(V); assert((Op.getOpcode() != ISD::CopyFromReg || cast(Op.getOperand(1))->getReg() != Reg) && "Copy from a reg to the same reg!"); // If this type is not legal, we must make sure to not create an invalid // register use. MVT::ValueType SrcVT = Op.getValueType(); MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT); SelectionDAG &DAG = SDL.DAG; if (SrcVT == DestVT) { return DAG.getCopyToReg(SDL.getRoot(), Reg, Op); } else if (SrcVT == MVT::Vector) { // Handle copies from generic vectors to registers. MVT::ValueType PTyElementVT, PTyLegalElementVT; unsigned NE = TLI.getPackedTypeBreakdown(cast(V->getType()), PTyElementVT, PTyLegalElementVT); // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT" // MVT::Vector type. Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op, DAG.getConstant(NE, MVT::i32), DAG.getValueType(PTyElementVT)); // Loop over all of the elements of the resultant vector, // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then // copying them into output registers. std::vector OutChains; SDOperand Root = SDL.getRoot(); for (unsigned i = 0; i != NE; ++i) { SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT, Op, DAG.getConstant(i, MVT::i32)); if (PTyElementVT == PTyLegalElementVT) { // Elements are legal. OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt)); } else if (PTyLegalElementVT > PTyElementVT) { // Elements are promoted. if (MVT::isFloatingPoint(PTyLegalElementVT)) Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt); else Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt); OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt)); } else { // Elements are expanded. // The src value is expanded into multiple registers. SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT, Elt, DAG.getConstant(0, MVT::i32)); SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT, Elt, DAG.getConstant(1, MVT::i32)); OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo)); OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi)); } } return DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains); } else if (SrcVT < DestVT) { // The src value is promoted to the register. if (MVT::isFloatingPoint(SrcVT)) Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op); else Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op); return DAG.getCopyToReg(SDL.getRoot(), Reg, Op); } else { // The src value is expanded into multiple registers. SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT, Op, DAG.getConstant(0, MVT::i32)); SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT, Op, DAG.getConstant(1, MVT::i32)); Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo); return DAG.getCopyToReg(Op, Reg+1, Hi); } } void SelectionDAGISel:: LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL, std::vector &UnorderedChains) { // If this is the entry block, emit arguments. Function &F = *BB->getParent(); FunctionLoweringInfo &FuncInfo = SDL.FuncInfo; SDOperand OldRoot = SDL.DAG.getRoot(); std::vector Args = TLI.LowerArguments(F, SDL.DAG); unsigned a = 0; for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI, ++a) if (!AI->use_empty()) { SDL.setValue(AI, Args[a]); // If this argument is live outside of the entry block, insert a copy from // whereever we got it to the vreg that other BB's will reference it as. if (FuncInfo.ValueMap.count(AI)) { SDOperand Copy = CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]); UnorderedChains.push_back(Copy); } } // Finally, if the target has anything special to do, allow it to do so. // FIXME: this should insert code into the DAG! EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction()); } void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB, std::vector > &PHINodesToUpdate, FunctionLoweringInfo &FuncInfo) { SelectionDAGLowering SDL(DAG, TLI, FuncInfo); std::vector UnorderedChains; // Lower any arguments needed in this block if this is the entry block. if (LLVMBB == &LLVMBB->getParent()->front()) LowerArguments(LLVMBB, SDL, UnorderedChains); BB = FuncInfo.MBBMap[LLVMBB]; SDL.setCurrentBasicBlock(BB); // Lower all of the non-terminator instructions. for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) SDL.visit(*I); // Ensure that all instructions which are used outside of their defining // blocks are available as virtual registers. for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I) if (!I->use_empty() && !isa(I)) { std::map::iterator VMI =FuncInfo.ValueMap.find(I); if (VMI != FuncInfo.ValueMap.end()) UnorderedChains.push_back( CopyValueToVirtualRegister(SDL, I, VMI->second)); } // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to // ensure constants are generated when needed. Remember the virtual registers // that need to be added to the Machine PHI nodes as input. We cannot just // directly add them, because expansion might result in multiple MBB's for one // BB. As such, the start of the BB might correspond to a different MBB than // the end. // // Emit constants only once even if used by multiple PHI nodes. std::map ConstantsOut; // Check successor nodes PHI nodes that expect a constant to be available from // this block. TerminatorInst *TI = LLVMBB->getTerminator(); for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { BasicBlock *SuccBB = TI->getSuccessor(succ); MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin(); PHINode *PN; // At this point we know that there is a 1-1 correspondence between LLVM PHI // nodes and Machine PHI nodes, but the incoming operands have not been // emitted yet. for (BasicBlock::iterator I = SuccBB->begin(); (PN = dyn_cast(I)); ++I) if (!PN->use_empty()) { unsigned Reg; Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); if (Constant *C = dyn_cast(PHIOp)) { unsigned &RegOut = ConstantsOut[C]; if (RegOut == 0) { RegOut = FuncInfo.CreateRegForValue(C); UnorderedChains.push_back( CopyValueToVirtualRegister(SDL, C, RegOut)); } Reg = RegOut; } else { Reg = FuncInfo.ValueMap[PHIOp]; if (Reg == 0) { assert(isa(PHIOp) && FuncInfo.StaticAllocaMap.count(cast(PHIOp)) && "Didn't codegen value into a register!??"); Reg = FuncInfo.CreateRegForValue(PHIOp); UnorderedChains.push_back( CopyValueToVirtualRegister(SDL, PHIOp, Reg)); } } // Remember that this register needs to added to the machine PHI node as // the input for this MBB. MVT::ValueType VT = TLI.getValueType(PN->getType()); unsigned NumElements; if (VT != MVT::Vector) NumElements = TLI.getNumElements(VT); else { MVT::ValueType VT1,VT2; NumElements = TLI.getPackedTypeBreakdown(cast(PN->getType()), VT1, VT2); } for (unsigned i = 0, e = NumElements; i != e; ++i) PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); } } ConstantsOut.clear(); // Turn all of the unordered chains into one factored node. if (!UnorderedChains.empty()) { SDOperand Root = SDL.getRoot(); if (Root.getOpcode() != ISD::EntryToken) { unsigned i = 0, e = UnorderedChains.size(); for (; i != e; ++i) { assert(UnorderedChains[i].Val->getNumOperands() > 1); if (UnorderedChains[i].Val->getOperand(0) == Root) break; // Don't add the root if we already indirectly depend on it. } if (i == e) UnorderedChains.push_back(Root); } DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains)); } // Lower the terminator after the copies are emitted. SDL.visit(*LLVMBB->getTerminator()); // Copy over any CaseBlock records that may now exist due to SwitchInst // lowering, as well as any jump table information. SwitchCases.clear(); SwitchCases = SDL.SwitchCases; JT = SDL.JT; // Make sure the root of the DAG is up-to-date. DAG.setRoot(SDL.getRoot()); } void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) { // Run the DAG combiner in pre-legalize mode. DAG.Combine(false); DEBUG(std::cerr << "Lowered selection DAG:\n"); DEBUG(DAG.dump()); // Second step, hack on the DAG until it only uses operations and types that // the target supports. DAG.Legalize(); DEBUG(std::cerr << "Legalized selection DAG:\n"); DEBUG(DAG.dump()); // Run the DAG combiner in post-legalize mode. DAG.Combine(true); if (ViewISelDAGs) DAG.viewGraph(); // Third, instruction select all of the operations to machine code, adding the // code to the MachineBasicBlock. InstructionSelectBasicBlock(DAG); DEBUG(std::cerr << "Selected machine code:\n"); DEBUG(BB->dump()); } void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF, FunctionLoweringInfo &FuncInfo) { std::vector > PHINodesToUpdate; { SelectionDAG DAG(TLI, MF, getAnalysisToUpdate()); CurDAG = &DAG; // First step, lower LLVM code to some DAG. This DAG may use operations and // types that are not supported by the target. BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo); // Second step, emit the lowered DAG as machine code. CodeGenAndEmitDAG(DAG); } // Next, now that we know what the last MBB the LLVM BB expanded is, update // PHI nodes in successors. if (SwitchCases.empty() && JT.Reg == 0) { for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { MachineInstr *PHI = PHINodesToUpdate[i].first; assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); PHI->addRegOperand(PHINodesToUpdate[i].second); PHI->addMachineBasicBlockOperand(BB); } return; } // If the JumpTable record is filled in, then we need to emit a jump table. // Updating the PHI nodes is tricky in this case, since we need to determine // whether the PHI is a successor of the range check MBB or the jump table MBB if (JT.Reg) { assert(SwitchCases.empty() && "Cannot have jump table and lowered switch"); SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate()); CurDAG = &SDAG; SelectionDAGLowering SDL(SDAG, TLI, FuncInfo); MachineBasicBlock *RangeBB = BB; // Set the current basic block to the mbb we wish to insert the code into BB = JT.MBB; SDL.setCurrentBasicBlock(BB); // Emit the code SDL.visitJumpTable(JT); SDAG.setRoot(SDL.getRoot()); CodeGenAndEmitDAG(SDAG); // Update PHI Nodes for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) { MachineInstr *PHI = PHINodesToUpdate[pi].first; MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); if (PHIBB == JT.Default) { PHI->addRegOperand(PHINodesToUpdate[pi].second); PHI->addMachineBasicBlockOperand(RangeBB); } if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) { PHI->addRegOperand(PHINodesToUpdate[pi].second); PHI->addMachineBasicBlockOperand(BB); } } return; } // If we generated any switch lowering information, build and codegen any // additional DAGs necessary. for(unsigned i = 0, e = SwitchCases.size(); i != e; ++i) { SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate()); CurDAG = &SDAG; SelectionDAGLowering SDL(SDAG, TLI, FuncInfo); // Set the current basic block to the mbb we wish to insert the code into BB = SwitchCases[i].ThisBB; SDL.setCurrentBasicBlock(BB); // Emit the code SDL.visitSwitchCase(SwitchCases[i]); SDAG.setRoot(SDL.getRoot()); CodeGenAndEmitDAG(SDAG); // Iterate over the phi nodes, if there is a phi node in a successor of this // block (for instance, the default block), then add a pair of operands to // the phi node for this block, as if we were coming from the original // BB before switch expansion. for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) { MachineInstr *PHI = PHINodesToUpdate[pi].first; MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); if (PHIBB == SwitchCases[i].LHSBB || PHIBB == SwitchCases[i].RHSBB) { PHI->addRegOperand(PHINodesToUpdate[pi].second); PHI->addMachineBasicBlockOperand(BB); } } } } //===----------------------------------------------------------------------===// /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each /// target node in the graph. void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) { if (ViewSchedDAGs) DAG.viewGraph(); ScheduleDAG *SL = NULL; switch (ISHeuristic) { default: assert(0 && "Unrecognized scheduling heuristic"); case defaultScheduling: if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer()); else { assert(TLI.getSchedulingPreference() == TargetLowering::SchedulingForRegPressure && "Unknown sched type!"); SL = createBURRListDAGScheduler(DAG, BB); } break; case noScheduling: SL = createBFS_DAGScheduler(DAG, BB); break; case simpleScheduling: SL = createSimpleDAGScheduler(false, DAG, BB); break; case simpleNoItinScheduling: SL = createSimpleDAGScheduler(true, DAG, BB); break; case listSchedulingBURR: SL = createBURRListDAGScheduler(DAG, BB); break; case listSchedulingTDRR: SL = createTDRRListDAGScheduler(DAG, BB); break; case listSchedulingTD: SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer()); break; } BB = SL->Run(); delete SL; } HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() { return new HazardRecognizer(); } /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated /// by tblgen. Others should not call it. void SelectionDAGISel:: SelectInlineAsmMemoryOperands(std::vector &Ops, SelectionDAG &DAG) { std::vector InOps; std::swap(InOps, Ops); Ops.push_back(InOps[0]); // input chain. Ops.push_back(InOps[1]); // input asm string. unsigned i = 2, e = InOps.size(); if (InOps[e-1].getValueType() == MVT::Flag) --e; // Don't process a flag operand if it is here. while (i != e) { unsigned Flags = cast(InOps[i])->getValue(); if ((Flags & 7) != 4 /*MEM*/) { // Just skip over this operand, copying the operands verbatim. Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1); i += (Flags >> 3) + 1; } else { assert((Flags >> 3) == 1 && "Memory operand with multiple values?"); // Otherwise, this is a memory operand. Ask the target to select it. std::vector SelOps; if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) { std::cerr << "Could not match memory address. Inline asm failure!\n"; exit(1); } // Add this to the output node. Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32)); Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); i += 2; } } // Add the flag input back if present. if (e != InOps.size()) Ops.push_back(InOps.back()); }