//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an implementation of Andersen's interprocedural alias // analysis // // In pointer analysis terms, this is a subset-based, flow-insensitive, // field-sensitive, and context-insensitive algorithm pointer algorithm. // // This algorithm is implemented as three stages: // 1. Object identification. // 2. Inclusion constraint identification. // 3. Inclusion constraint solving. // // The object identification stage identifies all of the memory objects in the // program, which includes globals, heap allocated objects, and stack allocated // objects. // // The inclusion constraint identification stage finds all inclusion constraints // in the program by scanning the program, looking for pointer assignments and // other statements that effect the points-to graph. For a statement like "A = // B", this statement is processed to indicate that A can point to anything that // B can point to. Constraints can handle copies, loads, and stores, and // address taking. // // The inclusion constraint solving phase iteratively propagates the inclusion // constraints until a fixed point is reached. This is an O(N^3) algorithm. // // Function constraints are handled as if they were structs with X fields. // Thus, an access to argument X of function Y is an access to node index // getNode(Y) + X. This representation allows handling of indirect calls // without any issues. To wit, an indirect call Y(a,b) is equivalence to // *(Y + 1) = a, *(Y + 2) = b. // The return node for a function is always located at getNode(F) + // CallReturnPos. The arguments start at getNode(F) + CallArgPos. // // Future Improvements: // Offline variable substitution, offline detection of online // cycles. Use of BDD's. //===----------------------------------------------------------------------===// #define DEBUG_TYPE "anders-aa" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/InstIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Passes.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SparseBitVector.h" #include #include #include #include #include using namespace llvm; STATISTIC(NumIters , "Number of iterations to reach convergence"); STATISTIC(NumConstraints , "Number of constraints"); STATISTIC(NumNodes , "Number of nodes"); STATISTIC(NumUnified , "Number of variables unified"); namespace { const unsigned SelfRep = (unsigned)-1; const unsigned Unvisited = (unsigned)-1; // Position of the function return node relative to the function node. const unsigned CallReturnPos = 2; // Position of the function call node relative to the function node. const unsigned CallFirstArgPos = 3; class VISIBILITY_HIDDEN Andersens : public ModulePass, public AliasAnalysis, private InstVisitor { class Node; /// Constraint - Objects of this structure are used to represent the various /// constraints identified by the algorithm. The constraints are 'copy', /// for statements like "A = B", 'load' for statements like "A = *B", /// 'store' for statements like "*A = B", and AddressOf for statements like /// A = alloca; The Offset is applied as *(A + K) = B for stores, /// A = *(B + K) for loads, and A = B + K for copies. It is /// illegal on addressof constraints (Because it is statically /// resolvable to A = &C where C = B + K) struct Constraint { enum ConstraintType { Copy, Load, Store, AddressOf } Type; unsigned Dest; unsigned Src; unsigned Offset; Constraint(ConstraintType Ty, unsigned D, unsigned S, unsigned O = 0) : Type(Ty), Dest(D), Src(S), Offset(O) { assert(Offset == 0 || Ty != AddressOf && "Offset is illegal on addressof constraints"); } }; // Node class - This class is used to represent a node // in the constraint graph. Due to various optimizations, // not always the case that there is a mapping from a Node to a // Value. In particular, we add artificial // Node's that represent the set of pointed-to variables // shared for each location equivalent Node. struct Node { Value *Val; SparseBitVector<> *Edges; SparseBitVector<> *PointsTo; SparseBitVector<> *OldPointsTo; bool Changed; std::list Constraints; // Nodes in cycles (or in equivalence classes) are united // together using a standard union-find representation with path // compression. NodeRep gives the index into GraphNodes // representative for this one. unsigned NodeRep; public: Node() : Val(0), Edges(0), PointsTo(0), OldPointsTo(0), Changed(false), NodeRep(SelfRep) { } Node *setValue(Value *V) { assert(Val == 0 && "Value already set for this node!"); Val = V; return this; } /// getValue - Return the LLVM value corresponding to this node. /// Value *getValue() const { return Val; } /// addPointerTo - Add a pointer to the list of pointees of this node, /// returning true if this caused a new pointer to be added, or false if /// we already knew about the points-to relation. bool addPointerTo(unsigned Node) { return PointsTo->test_and_set(Node); } /// intersects - Return true if the points-to set of this node intersects /// with the points-to set of the specified node. bool intersects(Node *N) const; /// intersectsIgnoring - Return true if the points-to set of this node /// intersects with the points-to set of the specified node on any nodes /// except for the specified node to ignore. bool intersectsIgnoring(Node *N, unsigned) const; }; /// GraphNodes - This vector is populated as part of the object /// identification stage of the analysis, which populates this vector with a /// node for each memory object and fills in the ValueNodes map. std::vector GraphNodes; /// ValueNodes - This map indicates the Node that a particular Value* is /// represented by. This contains entries for all pointers. std::map ValueNodes; /// ObjectNodes - This map contains entries for each memory object in the /// program: globals, alloca's and mallocs. std::map ObjectNodes; /// ReturnNodes - This map contains an entry for each function in the /// program that returns a value. std::map ReturnNodes; /// VarargNodes - This map contains the entry used to represent all pointers /// passed through the varargs portion of a function call for a particular /// function. An entry is not present in this map for functions that do not /// take variable arguments. std::map VarargNodes; /// Constraints - This vector contains a list of all of the constraints /// identified by the program. std::vector Constraints; // Map from graph node to maximum K value that is allowed (For functions, // this is equivalent to the number of arguments + CallFirstArgPos) std::map MaxK; /// This enum defines the GraphNodes indices that correspond to important /// fixed sets. enum { UniversalSet = 0, NullPtr = 1, NullObject = 2 }; // Stack for Tarjans std::stack SCCStack; // Topological Index -> Graph node std::vector Topo2Node; // Graph Node -> Topological Index; std::vector Node2Topo; // Map from Graph Node to DFS number std::vector Node2DFS; // Map from Graph Node to Deleted from graph. std::vector Node2Deleted; // Current DFS and RPO numbers unsigned DFSNumber; unsigned RPONumber; public: static char ID; Andersens() : ModulePass((intptr_t)&ID) {} bool runOnModule(Module &M) { InitializeAliasAnalysis(this); IdentifyObjects(M); CollectConstraints(M); DEBUG(PrintConstraints()); SolveConstraints(); DEBUG(PrintPointsToGraph()); // Free the constraints list, as we don't need it to respond to alias // requests. ObjectNodes.clear(); ReturnNodes.clear(); VarargNodes.clear(); std::vector().swap(Constraints); return false; } void releaseMemory() { // FIXME: Until we have transitively required passes working correctly, // this cannot be enabled! Otherwise, using -count-aa with the pass // causes memory to be freed too early. :( #if 0 // The memory objects and ValueNodes data structures at the only ones that // are still live after construction. std::vector().swap(GraphNodes); ValueNodes.clear(); #endif } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AliasAnalysis::getAnalysisUsage(AU); AU.setPreservesAll(); // Does not transform code } //------------------------------------------------ // Implement the AliasAnalysis API // AliasResult alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size); virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2); void getMustAliases(Value *P, std::vector &RetVals); bool pointsToConstantMemory(const Value *P); virtual void deleteValue(Value *V) { ValueNodes.erase(V); getAnalysis().deleteValue(V); } virtual void copyValue(Value *From, Value *To) { ValueNodes[To] = ValueNodes[From]; getAnalysis().copyValue(From, To); } private: /// getNode - Return the node corresponding to the specified pointer scalar. /// unsigned getNode(Value *V) { if (Constant *C = dyn_cast(V)) if (!isa(C)) return getNodeForConstantPointer(C); std::map::iterator I = ValueNodes.find(V); if (I == ValueNodes.end()) { #ifndef NDEBUG V->dump(); #endif assert(0 && "Value does not have a node in the points-to graph!"); } return I->second; } /// getObject - Return the node corresponding to the memory object for the /// specified global or allocation instruction. unsigned getObject(Value *V) { std::map::iterator I = ObjectNodes.find(V); assert(I != ObjectNodes.end() && "Value does not have an object in the points-to graph!"); return I->second; } /// getReturnNode - Return the node representing the return value for the /// specified function. unsigned getReturnNode(Function *F) { std::map::iterator I = ReturnNodes.find(F); assert(I != ReturnNodes.end() && "Function does not return a value!"); return I->second; } /// getVarargNode - Return the node representing the variable arguments /// formal for the specified function. unsigned getVarargNode(Function *F) { std::map::iterator I = VarargNodes.find(F); assert(I != VarargNodes.end() && "Function does not take var args!"); return I->second; } /// getNodeValue - Get the node for the specified LLVM value and set the /// value for it to be the specified value. unsigned getNodeValue(Value &V) { unsigned Index = getNode(&V); GraphNodes[Index].setValue(&V); return Index; } unsigned UniteNodes(unsigned First, unsigned Second); unsigned FindNode(unsigned Node); void IdentifyObjects(Module &M); void CollectConstraints(Module &M); bool AnalyzeUsesOfFunction(Value *); void CreateConstraintGraph(); void SolveConstraints(); void QueryNode(unsigned Node); unsigned getNodeForConstantPointer(Constant *C); unsigned getNodeForConstantPointerTarget(Constant *C); void AddGlobalInitializerConstraints(unsigned, Constant *C); void AddConstraintsForNonInternalLinkage(Function *F); void AddConstraintsForCall(CallSite CS, Function *F); bool AddConstraintsForExternalCall(CallSite CS, Function *F); void PrintNode(Node *N); void PrintConstraints(); void PrintPointsToGraph(); //===------------------------------------------------------------------===// // Instruction visitation methods for adding constraints // friend class InstVisitor; void visitReturnInst(ReturnInst &RI); void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); } void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); } void visitCallSite(CallSite CS); void visitAllocationInst(AllocationInst &AI); void visitLoadInst(LoadInst &LI); void visitStoreInst(StoreInst &SI); void visitGetElementPtrInst(GetElementPtrInst &GEP); void visitPHINode(PHINode &PN); void visitCastInst(CastInst &CI); void visitICmpInst(ICmpInst &ICI) {} // NOOP! void visitFCmpInst(FCmpInst &ICI) {} // NOOP! void visitSelectInst(SelectInst &SI); void visitVAArg(VAArgInst &I); void visitInstruction(Instruction &I); }; char Andersens::ID = 0; RegisterPass X("anders-aa", "Andersen's Interprocedural Alias Analysis"); RegisterAnalysisGroup Y(X); } ModulePass *llvm::createAndersensPass() { return new Andersens(); } //===----------------------------------------------------------------------===// // AliasAnalysis Interface Implementation //===----------------------------------------------------------------------===// AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { Node *N1 = &GraphNodes[FindNode(getNode(const_cast(V1)))]; Node *N2 = &GraphNodes[FindNode(getNode(const_cast(V2)))]; // Check to see if the two pointers are known to not alias. They don't alias // if their points-to sets do not intersect. if (!N1->intersectsIgnoring(N2, NullObject)) return NoAlias; return AliasAnalysis::alias(V1, V1Size, V2, V2Size); } AliasAnalysis::ModRefResult Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) { // The only thing useful that we can contribute for mod/ref information is // when calling external function calls: if we know that memory never escapes // from the program, it cannot be modified by an external call. // // NOTE: This is not really safe, at least not when the entire program is not // available. The deal is that the external function could call back into the // program and modify stuff. We ignore this technical niggle for now. This // is, after all, a "research quality" implementation of Andersen's analysis. if (Function *F = CS.getCalledFunction()) if (F->isDeclaration()) { Node *N1 = &GraphNodes[FindNode(getNode(P))]; if (N1->PointsTo->empty()) return NoModRef; if (!N1->PointsTo->test(UniversalSet)) return NoModRef; // P doesn't point to the universal set. } return AliasAnalysis::getModRefInfo(CS, P, Size); } AliasAnalysis::ModRefResult Andersens::getModRefInfo(CallSite CS1, CallSite CS2) { return AliasAnalysis::getModRefInfo(CS1,CS2); } /// getMustAlias - We can provide must alias information if we know that a /// pointer can only point to a specific function or the null pointer. /// Unfortunately we cannot determine must-alias information for global /// variables or any other memory memory objects because we do not track whether /// a pointer points to the beginning of an object or a field of it. void Andersens::getMustAliases(Value *P, std::vector &RetVals) { Node *N = &GraphNodes[FindNode(getNode(P))]; if (N->PointsTo->count() == 1) { Node *Pointee = &GraphNodes[N->PointsTo->find_first()]; // If a function is the only object in the points-to set, then it must be // the destination. Note that we can't handle global variables here, // because we don't know if the pointer is actually pointing to a field of // the global or to the beginning of it. if (Value *V = Pointee->getValue()) { if (Function *F = dyn_cast(V)) RetVals.push_back(F); } else { // If the object in the points-to set is the null object, then the null // pointer is a must alias. if (Pointee == &GraphNodes[NullObject]) RetVals.push_back(Constant::getNullValue(P->getType())); } } AliasAnalysis::getMustAliases(P, RetVals); } /// pointsToConstantMemory - If we can determine that this pointer only points /// to constant memory, return true. In practice, this means that if the /// pointer can only point to constant globals, functions, or the null pointer, /// return true. /// bool Andersens::pointsToConstantMemory(const Value *P) { Node *N = &GraphNodes[FindNode(getNode((Value*)P))]; unsigned i; for (SparseBitVector<>::iterator bi = N->PointsTo->begin(); bi != N->PointsTo->end(); ++bi) { i = *bi; Node *Pointee = &GraphNodes[i]; if (Value *V = Pointee->getValue()) { if (!isa(V) || (isa(V) && !cast(V)->isConstant())) return AliasAnalysis::pointsToConstantMemory(P); } else { if (i != NullObject) return AliasAnalysis::pointsToConstantMemory(P); } } return true; } //===----------------------------------------------------------------------===// // Object Identification Phase //===----------------------------------------------------------------------===// /// IdentifyObjects - This stage scans the program, adding an entry to the /// GraphNodes list for each memory object in the program (global stack or /// heap), and populates the ValueNodes and ObjectNodes maps for these objects. /// void Andersens::IdentifyObjects(Module &M) { unsigned NumObjects = 0; // Object #0 is always the universal set: the object that we don't know // anything about. assert(NumObjects == UniversalSet && "Something changed!"); ++NumObjects; // Object #1 always represents the null pointer. assert(NumObjects == NullPtr && "Something changed!"); ++NumObjects; // Object #2 always represents the null object (the object pointed to by null) assert(NumObjects == NullObject && "Something changed!"); ++NumObjects; // Add all the globals first. for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { ObjectNodes[I] = NumObjects++; ValueNodes[I] = NumObjects++; } // Add nodes for all of the functions and the instructions inside of them. for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { // The function itself is a memory object. unsigned First = NumObjects; ValueNodes[F] = NumObjects++; ObjectNodes[F] = NumObjects++; if (isa(F->getFunctionType()->getReturnType())) ReturnNodes[F] = NumObjects++; if (F->getFunctionType()->isVarArg()) VarargNodes[F] = NumObjects++; // Add nodes for all of the incoming pointer arguments. for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (isa(I->getType())) ValueNodes[I] = NumObjects++; MaxK[First] = NumObjects - First; MaxK[First + 1] = NumObjects - First - 1; // Scan the function body, creating a memory object for each heap/stack // allocation in the body of the function and a node to represent all // pointer values defined by instructions and used as operands. for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { // If this is an heap or stack allocation, create a node for the memory // object. if (isa(II->getType())) { ValueNodes[&*II] = NumObjects++; if (AllocationInst *AI = dyn_cast(&*II)) ObjectNodes[AI] = NumObjects++; } } } // Now that we know how many objects to create, make them all now! GraphNodes.resize(NumObjects); NumNodes += NumObjects; } //===----------------------------------------------------------------------===// // Constraint Identification Phase //===----------------------------------------------------------------------===// /// getNodeForConstantPointer - Return the node corresponding to the constant /// pointer itself. unsigned Andersens::getNodeForConstantPointer(Constant *C) { assert(isa(C->getType()) && "Not a constant pointer!"); if (isa(C) || isa(C)) return NullPtr; else if (GlobalValue *GV = dyn_cast(C)) return getNode(GV); else if (ConstantExpr *CE = dyn_cast(C)) { switch (CE->getOpcode()) { case Instruction::GetElementPtr: return getNodeForConstantPointer(CE->getOperand(0)); case Instruction::IntToPtr: return UniversalSet; case Instruction::BitCast: return getNodeForConstantPointer(CE->getOperand(0)); default: cerr << "Constant Expr not yet handled: " << *CE << "\n"; assert(0); } } else { assert(0 && "Unknown constant pointer!"); } return 0; } /// getNodeForConstantPointerTarget - Return the node POINTED TO by the /// specified constant pointer. unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) { assert(isa(C->getType()) && "Not a constant pointer!"); if (isa(C)) return NullObject; else if (GlobalValue *GV = dyn_cast(C)) return getObject(GV); else if (ConstantExpr *CE = dyn_cast(C)) { switch (CE->getOpcode()) { case Instruction::GetElementPtr: return getNodeForConstantPointerTarget(CE->getOperand(0)); case Instruction::IntToPtr: return UniversalSet; case Instruction::BitCast: return getNodeForConstantPointerTarget(CE->getOperand(0)); default: cerr << "Constant Expr not yet handled: " << *CE << "\n"; assert(0); } } else { assert(0 && "Unknown constant pointer!"); } return 0; } /// AddGlobalInitializerConstraints - Add inclusion constraints for the memory /// object N, which contains values indicated by C. void Andersens::AddGlobalInitializerConstraints(unsigned NodeIndex, Constant *C) { if (C->getType()->isFirstClassType()) { if (isa(C->getType())) Constraints.push_back(Constraint(Constraint::Copy, NodeIndex, getNodeForConstantPointer(C))); } else if (C->isNullValue()) { Constraints.push_back(Constraint(Constraint::Copy, NodeIndex, NullObject)); return; } else if (!isa(C)) { // If this is an array or struct, include constraints for each element. assert(isa(C) || isa(C)); for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) AddGlobalInitializerConstraints(NodeIndex, cast(C->getOperand(i))); } } /// AddConstraintsForNonInternalLinkage - If this function does not have /// internal linkage, realize that we can't trust anything passed into or /// returned by this function. void Andersens::AddConstraintsForNonInternalLinkage(Function *F) { for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (isa(I->getType())) // If this is an argument of an externally accessible function, the // incoming pointer might point to anything. Constraints.push_back(Constraint(Constraint::Copy, getNode(I), UniversalSet)); } /// AddConstraintsForCall - If this is a call to a "known" function, add the /// constraints and return true. If this is a call to an unknown function, /// return false. bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) { assert(F->isDeclaration() && "Not an external function!"); // These functions don't induce any points-to constraints. if (F->getName() == "atoi" || F->getName() == "atof" || F->getName() == "atol" || F->getName() == "atoll" || F->getName() == "remove" || F->getName() == "unlink" || F->getName() == "rename" || F->getName() == "memcmp" || F->getName() == "llvm.memset.i32" || F->getName() == "llvm.memset.i64" || F->getName() == "strcmp" || F->getName() == "strncmp" || F->getName() == "execl" || F->getName() == "execlp" || F->getName() == "execle" || F->getName() == "execv" || F->getName() == "execvp" || F->getName() == "chmod" || F->getName() == "puts" || F->getName() == "write" || F->getName() == "open" || F->getName() == "create" || F->getName() == "truncate" || F->getName() == "chdir" || F->getName() == "mkdir" || F->getName() == "rmdir" || F->getName() == "read" || F->getName() == "pipe" || F->getName() == "wait" || F->getName() == "time" || F->getName() == "stat" || F->getName() == "fstat" || F->getName() == "lstat" || F->getName() == "strtod" || F->getName() == "strtof" || F->getName() == "strtold" || F->getName() == "fopen" || F->getName() == "fdopen" || F->getName() == "freopen" || F->getName() == "fflush" || F->getName() == "feof" || F->getName() == "fileno" || F->getName() == "clearerr" || F->getName() == "rewind" || F->getName() == "ftell" || F->getName() == "ferror" || F->getName() == "fgetc" || F->getName() == "fgetc" || F->getName() == "_IO_getc" || F->getName() == "fwrite" || F->getName() == "fread" || F->getName() == "fgets" || F->getName() == "ungetc" || F->getName() == "fputc" || F->getName() == "fputs" || F->getName() == "putc" || F->getName() == "ftell" || F->getName() == "rewind" || F->getName() == "_IO_putc" || F->getName() == "fseek" || F->getName() == "fgetpos" || F->getName() == "fsetpos" || F->getName() == "printf" || F->getName() == "fprintf" || F->getName() == "sprintf" || F->getName() == "vprintf" || F->getName() == "vfprintf" || F->getName() == "vsprintf" || F->getName() == "scanf" || F->getName() == "fscanf" || F->getName() == "sscanf" || F->getName() == "__assert_fail" || F->getName() == "modf") return true; // These functions do induce points-to edges. if (F->getName() == "llvm.memcpy.i32" || F->getName() == "llvm.memcpy.i64" || F->getName() == "llvm.memmove.i32" ||F->getName() == "llvm.memmove.i64" || F->getName() == "memmove") { // *Dest = *Src, which requires an artificial graph node to represent the // constraint. It is broken up into *Dest = temp, temp = *Src unsigned FirstArg = getNode(CS.getArgument(0)); unsigned SecondArg = getNode(CS.getArgument(1)); unsigned TempArg = GraphNodes.size(); GraphNodes.push_back(Node()); Constraints.push_back(Constraint(Constraint::Store, FirstArg, TempArg)); Constraints.push_back(Constraint(Constraint::Load, TempArg, SecondArg)); return true; } // Result = Arg0 if (F->getName() == "realloc" || F->getName() == "strchr" || F->getName() == "strrchr" || F->getName() == "strstr" || F->getName() == "strtok") { Constraints.push_back(Constraint(Constraint::Copy, getNode(CS.getInstruction()), getNode(CS.getArgument(0)))); return true; } return false; } /// AnalyzeUsesOfFunction - Look at all of the users of the specified function. /// If this is used by anything complex (i.e., the address escapes), return /// true. bool Andersens::AnalyzeUsesOfFunction(Value *V) { if (!isa(V->getType())) return true; for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) if (dyn_cast(*UI)) { return false; } else if (StoreInst *SI = dyn_cast(*UI)) { if (V == SI->getOperand(1)) { return false; } else if (SI->getOperand(1)) { return true; // Storing the pointer } } else if (GetElementPtrInst *GEP = dyn_cast(*UI)) { if (AnalyzeUsesOfFunction(GEP)) return true; } else if (CallInst *CI = dyn_cast(*UI)) { // Make sure that this is just the function being called, not that it is // passing into the function. for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) if (CI->getOperand(i) == V) return true; } else if (InvokeInst *II = dyn_cast(*UI)) { // Make sure that this is just the function being called, not that it is // passing into the function. for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i) if (II->getOperand(i) == V) return true; } else if (ConstantExpr *CE = dyn_cast(*UI)) { if (CE->getOpcode() == Instruction::GetElementPtr || CE->getOpcode() == Instruction::BitCast) { if (AnalyzeUsesOfFunction(CE)) return true; } else { return true; } } else if (ICmpInst *ICI = dyn_cast(*UI)) { if (!isa(ICI->getOperand(1))) return true; // Allow comparison against null. } else if (dyn_cast(*UI)) { return false; } else { return true; } return false; } /// CollectConstraints - This stage scans the program, adding a constraint to /// the Constraints list for each instruction in the program that induces a /// constraint, and setting up the initial points-to graph. /// void Andersens::CollectConstraints(Module &M) { // First, the universal set points to itself. Constraints.push_back(Constraint(Constraint::AddressOf, UniversalSet, UniversalSet)); Constraints.push_back(Constraint(Constraint::Store, UniversalSet, UniversalSet)); // Next, the null pointer points to the null object. Constraints.push_back(Constraint(Constraint::AddressOf, NullPtr, NullObject)); // Next, add any constraints on global variables and their initializers. for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { // Associate the address of the global object as pointing to the memory for // the global: &G = unsigned ObjectIndex = getObject(I); Node *Object = &GraphNodes[ObjectIndex]; Object->setValue(I); Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I), ObjectIndex)); if (I->hasInitializer()) { AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer()); } else { // If it doesn't have an initializer (i.e. it's defined in another // translation unit), it points to the universal set. Constraints.push_back(Constraint(Constraint::Copy, ObjectIndex, UniversalSet)); } } for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { // Make the function address point to the function object. unsigned ObjectIndex = getObject(F); GraphNodes[ObjectIndex].setValue(F); Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*F), ObjectIndex)); // Set up the return value node. if (isa(F->getFunctionType()->getReturnType())) GraphNodes[getReturnNode(F)].setValue(F); if (F->getFunctionType()->isVarArg()) GraphNodes[getVarargNode(F)].setValue(F); // Set up incoming argument nodes. for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (isa(I->getType())) getNodeValue(*I); // At some point we should just add constraints for the escaping functions // at solve time, but this slows down solving. For now, we simply mark // address taken functions as escaping and treat them as external. if (!F->hasInternalLinkage() || AnalyzeUsesOfFunction(F)) AddConstraintsForNonInternalLinkage(F); if (!F->isDeclaration()) { // Scan the function body, creating a memory object for each heap/stack // allocation in the body of the function and a node to represent all // pointer values defined by instructions and used as operands. visit(F); } else { // External functions that return pointers return the universal set. if (isa(F->getFunctionType()->getReturnType())) Constraints.push_back(Constraint(Constraint::Copy, getReturnNode(F), UniversalSet)); // Any pointers that are passed into the function have the universal set // stored into them. for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (isa(I->getType())) { // Pointers passed into external functions could have anything stored // through them. Constraints.push_back(Constraint(Constraint::Store, getNode(I), UniversalSet)); // Memory objects passed into external function calls can have the // universal set point to them. Constraints.push_back(Constraint(Constraint::Copy, UniversalSet, getNode(I))); } // If this is an external varargs function, it can also store pointers // into any pointers passed through the varargs section. if (F->getFunctionType()->isVarArg()) Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F), UniversalSet)); } } NumConstraints += Constraints.size(); } void Andersens::visitInstruction(Instruction &I) { #ifdef NDEBUG return; // This function is just a big assert. #endif if (isa(I)) return; // Most instructions don't have any effect on pointer values. switch (I.getOpcode()) { case Instruction::Br: case Instruction::Switch: case Instruction::Unwind: case Instruction::Unreachable: case Instruction::Free: case Instruction::ICmp: case Instruction::FCmp: return; default: // Is this something we aren't handling yet? cerr << "Unknown instruction: " << I; abort(); } } void Andersens::visitAllocationInst(AllocationInst &AI) { unsigned ObjectIndex = getObject(&AI); GraphNodes[ObjectIndex].setValue(&AI); Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(AI), ObjectIndex)); } void Andersens::visitReturnInst(ReturnInst &RI) { if (RI.getNumOperands() && isa(RI.getOperand(0)->getType())) // return V --> Constraints.push_back(Constraint(Constraint::Copy, getReturnNode(RI.getParent()->getParent()), getNode(RI.getOperand(0)))); } void Andersens::visitLoadInst(LoadInst &LI) { if (isa(LI.getType())) // P1 = load P2 --> Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI), getNode(LI.getOperand(0)))); } void Andersens::visitStoreInst(StoreInst &SI) { if (isa(SI.getOperand(0)->getType())) // store P1, P2 --> Constraints.push_back(Constraint(Constraint::Store, getNode(SI.getOperand(1)), getNode(SI.getOperand(0)))); } void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) { // P1 = getelementptr P2, ... --> Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP), getNode(GEP.getOperand(0)))); } void Andersens::visitPHINode(PHINode &PN) { if (isa(PN.getType())) { unsigned PNN = getNodeValue(PN); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) // P1 = phi P2, P3 --> , , ... Constraints.push_back(Constraint(Constraint::Copy, PNN, getNode(PN.getIncomingValue(i)))); } } void Andersens::visitCastInst(CastInst &CI) { Value *Op = CI.getOperand(0); if (isa(CI.getType())) { if (isa(Op->getType())) { // P1 = cast P2 --> Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), getNode(CI.getOperand(0)))); } else { // P1 = cast int --> #if 0 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), UniversalSet)); #else getNodeValue(CI); #endif } } else if (isa(Op->getType())) { // int = cast P1 --> #if 0 Constraints.push_back(Constraint(Constraint::Copy, UniversalSet, getNode(CI.getOperand(0)))); #else getNode(CI.getOperand(0)); #endif } } void Andersens::visitSelectInst(SelectInst &SI) { if (isa(SI.getType())) { unsigned SIN = getNodeValue(SI); // P1 = select C, P2, P3 ---> , Constraints.push_back(Constraint(Constraint::Copy, SIN, getNode(SI.getOperand(1)))); Constraints.push_back(Constraint(Constraint::Copy, SIN, getNode(SI.getOperand(2)))); } } void Andersens::visitVAArg(VAArgInst &I) { assert(0 && "vaarg not handled yet!"); } /// AddConstraintsForCall - Add constraints for a call with actual arguments /// specified by CS to the function specified by F. Note that the types of /// arguments might not match up in the case where this is an indirect call and /// the function pointer has been casted. If this is the case, do something /// reasonable. void Andersens::AddConstraintsForCall(CallSite CS, Function *F) { Value *CallValue = CS.getCalledValue(); bool IsDeref = F == NULL; // If this is a call to an external function, try to handle it directly to get // some taste of context sensitivity. if (F && F->isDeclaration() && AddConstraintsForExternalCall(CS, F)) return; if (isa(CS.getType())) { unsigned CSN = getNode(CS.getInstruction()); if (!F || isa(F->getFunctionType()->getReturnType())) { if (IsDeref) Constraints.push_back(Constraint(Constraint::Load, CSN, getNode(CallValue), CallReturnPos)); else Constraints.push_back(Constraint(Constraint::Copy, CSN, getNode(CallValue) + CallReturnPos)); } else { // If the function returns a non-pointer value, handle this just like we // treat a nonpointer cast to pointer. Constraints.push_back(Constraint(Constraint::Copy, CSN, UniversalSet)); } } else if (F && isa(F->getFunctionType()->getReturnType())) { Constraints.push_back(Constraint(Constraint::Copy, UniversalSet, getNode(CallValue) + CallReturnPos)); } CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end(); if (F) { // Direct Call Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end(); for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI) if (isa(AI->getType())) { if (isa((*ArgI)->getType())) { // Copy the actual argument into the formal argument. Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), getNode(*ArgI))); } else { Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), UniversalSet)); } } else if (isa((*ArgI)->getType())) { Constraints.push_back(Constraint(Constraint::Copy, UniversalSet, getNode(*ArgI))); } } else { //Indirect Call unsigned ArgPos = CallFirstArgPos; for (; ArgI != ArgE; ++ArgI) { if (isa((*ArgI)->getType())) { // Copy the actual argument into the formal argument. Constraints.push_back(Constraint(Constraint::Store, getNode(CallValue), getNode(*ArgI), ArgPos++)); } else { Constraints.push_back(Constraint(Constraint::Store, getNode (CallValue), UniversalSet, ArgPos++)); } } } // Copy all pointers passed through the varargs section to the varargs node. if (F && F->getFunctionType()->isVarArg()) for (; ArgI != ArgE; ++ArgI) if (isa((*ArgI)->getType())) Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F), getNode(*ArgI))); // If more arguments are passed in than we track, just drop them on the floor. } void Andersens::visitCallSite(CallSite CS) { if (isa(CS.getType())) getNodeValue(*CS.getInstruction()); if (Function *F = CS.getCalledFunction()) { AddConstraintsForCall(CS, F); } else { AddConstraintsForCall(CS, NULL); } } //===----------------------------------------------------------------------===// // Constraint Solving Phase //===----------------------------------------------------------------------===// /// intersects - Return true if the points-to set of this node intersects /// with the points-to set of the specified node. bool Andersens::Node::intersects(Node *N) const { return PointsTo->intersects(N->PointsTo); } /// intersectsIgnoring - Return true if the points-to set of this node /// intersects with the points-to set of the specified node on any nodes /// except for the specified node to ignore. bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const { // TODO: If we are only going to call this with the same value for Ignoring, // we should move the special values out of the points-to bitmap. bool WeHadIt = PointsTo->test(Ignoring); bool NHadIt = N->PointsTo->test(Ignoring); bool Result = false; if (WeHadIt) PointsTo->reset(Ignoring); if (NHadIt) N->PointsTo->reset(Ignoring); Result = PointsTo->intersects(N->PointsTo); if (WeHadIt) PointsTo->set(Ignoring); if (NHadIt) N->PointsTo->set(Ignoring); return Result; } // Create the constraint graph used for solving points-to analysis. // void Andersens::CreateConstraintGraph() { for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { Constraint &C = Constraints[i]; assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size()); if (C.Type == Constraint::AddressOf) GraphNodes[C.Dest].PointsTo->set(C.Src); else if (C.Type == Constraint::Load) GraphNodes[C.Src].Constraints.push_back(C); else if (C.Type == Constraint::Store) GraphNodes[C.Dest].Constraints.push_back(C); else if (C.Offset != 0) GraphNodes[C.Src].Constraints.push_back(C); else GraphNodes[C.Src].Edges->set(C.Dest); } } // Perform cycle detection, DFS, and RPO finding. void Andersens::QueryNode(unsigned Node) { assert(GraphNodes[Node].NodeRep == SelfRep && "Querying a non-rep node"); unsigned OurDFS = ++DFSNumber; SparseBitVector<> ToErase; SparseBitVector<> NewEdges; Node2DFS[Node] = OurDFS; for (SparseBitVector<>::iterator bi = GraphNodes[Node].Edges->begin(); bi != GraphNodes[Node].Edges->end(); ++bi) { unsigned RepNode = FindNode(*bi); // If we are going to add an edge to repnode, we have no need for the edge // to e anymore. if (RepNode != *bi && NewEdges.test(RepNode)){ ToErase.set(*bi); continue; } // Continue about our DFS. if (!Node2Deleted[RepNode]){ if (Node2DFS[RepNode] == 0) { QueryNode(RepNode); // May have been changed by query RepNode = FindNode(RepNode); } if (Node2DFS[RepNode] < Node2DFS[Node]) Node2DFS[Node] = Node2DFS[RepNode]; } // We may have just discovered that e belongs to a cycle, in which case we // can also erase it. if (RepNode != *bi) { ToErase.set(*bi); NewEdges.set(RepNode); } } GraphNodes[Node].Edges->intersectWithComplement(ToErase); GraphNodes[Node].Edges |= NewEdges; // If this node is a root of a non-trivial SCC, place it on our worklist to be // processed if (OurDFS == Node2DFS[Node]) { bool Changed = false; while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= OurDFS) { Node = UniteNodes(Node, FindNode(SCCStack.top())); SCCStack.pop(); Changed = true; } Node2Deleted[Node] = true; RPONumber++; Topo2Node.at(GraphNodes.size() - RPONumber) = Node; Node2Topo[Node] = GraphNodes.size() - RPONumber; if (Changed) GraphNodes[Node].Changed = true; } else { SCCStack.push(Node); } } /// SolveConstraints - This stage iteratively processes the constraints list /// propagating constraints (adding edges to the Nodes in the points-to graph) /// until a fixed point is reached. /// void Andersens::SolveConstraints() { bool Changed = true; unsigned Iteration = 0; // We create the bitmaps here to avoid getting jerked around by the compiler // creating objects behind our back and wasting lots of memory. for (unsigned i = 0; i < GraphNodes.size(); ++i) { Node *N = &GraphNodes[i]; N->PointsTo = new SparseBitVector<>; N->OldPointsTo = new SparseBitVector<>; N->Edges = new SparseBitVector<>; } CreateConstraintGraph(); Topo2Node.insert(Topo2Node.begin(), GraphNodes.size(), Unvisited); Node2Topo.insert(Node2Topo.begin(), GraphNodes.size(), Unvisited); Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0); Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false); DFSNumber = 0; RPONumber = 0; // Order graph and mark starting nodes as changed. for (unsigned i = 0; i < GraphNodes.size(); ++i) { unsigned N = FindNode(i); Node *INode = &GraphNodes[i]; if (Node2DFS[N] == 0) { QueryNode(N); // Mark as changed if it's a representation and can contribute to the // calculation right now. if (INode->NodeRep == SelfRep && !INode->PointsTo->empty() && (!INode->Edges->empty() || !INode->Constraints.empty())) INode->Changed = true; } } do { Changed = false; ++NumIters; DOUT << "Starting iteration #" << Iteration++; // TODO: In the microoptimization category, we could just make Topo2Node // a fast map and thus only contain the visited nodes. for (unsigned i = 0; i < GraphNodes.size(); ++i) { unsigned CurrNodeIndex = Topo2Node[i]; Node *CurrNode; // We may not revisit all nodes on every iteration if (CurrNodeIndex == Unvisited) continue; CurrNode = &GraphNodes[CurrNodeIndex]; // See if this is a node we need to process on this iteration if (!CurrNode->Changed || CurrNode->NodeRep != SelfRep) continue; CurrNode->Changed = false; // Figure out the changed points to bits SparseBitVector<> CurrPointsTo; CurrPointsTo.intersectWithComplement(CurrNode->PointsTo, CurrNode->OldPointsTo); if (CurrPointsTo.empty()){ continue; } *(CurrNode->OldPointsTo) |= CurrPointsTo; /* Now process the constraints for this node. */ for (std::list::iterator li = CurrNode->Constraints.begin(); li != CurrNode->Constraints.end(); ) { li->Src = FindNode(li->Src); li->Dest = FindNode(li->Dest); // TODO: We could delete redundant constraints here. // Src and Dest will be the vars we are going to process. // This may look a bit ugly, but what it does is allow us to process // both store and load constraints with the same function. // Load constraints say that every member of our RHS solution has K // added to it, and that variable gets an edge to LHS. We also union // RHS+K's solution into the LHS solution. // Store constraints say that every member of our LHS solution has K // added to it, and that variable gets an edge from RHS. We also union // RHS's solution into the LHS+K solution. unsigned *Src; unsigned *Dest; unsigned K = li->Offset; unsigned CurrMember; if (li->Type == Constraint::Load) { Src = &CurrMember; Dest = &li->Dest; } else if (li->Type == Constraint::Store) { Src = &li->Src; Dest = &CurrMember; } else { // TODO Handle offseted copy constraint li++; continue; } // TODO: hybrid cycle detection would go here, we should check // if it was a statically detected offline equivalence that // involves pointers , and if so, remove the redundant constraints. const SparseBitVector<> &Solution = CurrPointsTo; for (SparseBitVector<>::iterator bi = Solution.begin(); bi != Solution.end(); ++bi) { CurrMember = *bi; // Need to increment the member by K since that is where we are // supposed to copy to/from // Node that in positive weight cycles, which occur in address taking // of fields, K can go past // MaxK[CurrMember] elements, even though that is all it could // point to. if (K > 0 && K > MaxK[CurrMember]) continue; else CurrMember = FindNode(CurrMember + K); // Add an edge to the graph, so we can just do regular bitmap ior next // time. It may also let us notice a cycle. if (GraphNodes[*Src].Edges->test_and_set(*Dest)) { if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo)) { GraphNodes[*Dest].Changed = true; // If we changed a node we've already processed, we need another // iteration. if (Node2Topo[*Dest] <= i) Changed = true; } } } li++; } SparseBitVector<> NewEdges; SparseBitVector<> ToErase; // Now all we have left to do is propagate points-to info along the // edges, erasing the redundant edges. for (SparseBitVector<>::iterator bi = CurrNode->Edges->begin(); bi != CurrNode->Edges->end(); ++bi) { unsigned DestVar = *bi; unsigned Rep = FindNode(DestVar); // If we ended up with this node as our destination, or we've already // got an edge for the representative, delete the current edge. if (Rep == CurrNodeIndex || (Rep != DestVar && NewEdges.test(Rep))) { ToErase.set(DestVar); continue; } // Union the points-to sets into the dest if (GraphNodes[Rep].PointsTo |= CurrPointsTo) { GraphNodes[Rep].Changed = true; if (Node2Topo[Rep] <= i) Changed = true; } // If this edge's destination was collapsed, rewrite the edge. if (Rep != DestVar) { ToErase.set(DestVar); NewEdges.set(Rep); } } CurrNode->Edges->intersectWithComplement(ToErase); CurrNode->Edges |= NewEdges; } if (Changed) { DFSNumber = RPONumber = 0; Node2Deleted.clear(); Topo2Node.clear(); Node2Topo.clear(); Node2DFS.clear(); Topo2Node.insert(Topo2Node.begin(), GraphNodes.size(), Unvisited); Node2Topo.insert(Node2Topo.begin(), GraphNodes.size(), Unvisited); Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0); Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false); // Rediscover the DFS/Topo ordering, and cycle detect. for (unsigned j = 0; j < GraphNodes.size(); j++) { unsigned JRep = FindNode(j); if (Node2DFS[JRep] == 0) QueryNode(JRep); } } } while (Changed); Node2Topo.clear(); Topo2Node.clear(); Node2DFS.clear(); Node2Deleted.clear(); for (unsigned i = 0; i < GraphNodes.size(); ++i) { Node *N = &GraphNodes[i]; delete N->OldPointsTo; delete N->Edges; } } //===----------------------------------------------------------------------===// // Union-Find //===----------------------------------------------------------------------===// // Unite nodes First and Second, returning the one which is now the // representative node. First and Second are indexes into GraphNodes unsigned Andersens::UniteNodes(unsigned First, unsigned Second) { assert (First < GraphNodes.size() && Second < GraphNodes.size() && "Attempting to merge nodes that don't exist"); // TODO: implement union by rank Node *FirstNode = &GraphNodes[First]; Node *SecondNode = &GraphNodes[Second]; assert (SecondNode->NodeRep == SelfRep && FirstNode->NodeRep == SelfRep && "Trying to unite two non-representative nodes!"); if (First == Second) return First; SecondNode->NodeRep = First; FirstNode->Changed |= SecondNode->Changed; FirstNode->PointsTo |= *(SecondNode->PointsTo); FirstNode->Edges |= *(SecondNode->Edges); FirstNode->Constraints.splice(FirstNode->Constraints.begin(), SecondNode->Constraints); delete FirstNode->OldPointsTo; FirstNode->OldPointsTo = new SparseBitVector<>; // Destroy interesting parts of the merged-from node. delete SecondNode->OldPointsTo; delete SecondNode->Edges; delete SecondNode->PointsTo; SecondNode->Edges = NULL; SecondNode->PointsTo = NULL; SecondNode->OldPointsTo = NULL; NumUnified++; DOUT << "Unified Node "; DEBUG(PrintNode(FirstNode)); DOUT << " and Node "; DEBUG(PrintNode(SecondNode)); DOUT << "\n"; // TODO: Handle SDT return First; } // Find the index into GraphNodes of the node representing Node, performing // path compression along the way unsigned Andersens::FindNode(unsigned NodeIndex) { assert (NodeIndex < GraphNodes.size() && "Attempting to find a node that can't exist"); Node *N = &GraphNodes[NodeIndex]; if (N->NodeRep == SelfRep) return NodeIndex; else return (N->NodeRep = FindNode(N->NodeRep)); } //===----------------------------------------------------------------------===// // Debugging Output //===----------------------------------------------------------------------===// void Andersens::PrintNode(Node *N) { if (N == &GraphNodes[UniversalSet]) { cerr << ""; return; } else if (N == &GraphNodes[NullPtr]) { cerr << ""; return; } else if (N == &GraphNodes[NullObject]) { cerr << ""; return; } if (!N->getValue()) { cerr << "artificial" << (intptr_t) N; return; } assert(N->getValue() != 0 && "Never set node label!"); Value *V = N->getValue(); if (Function *F = dyn_cast(V)) { if (isa(F->getFunctionType()->getReturnType()) && N == &GraphNodes[getReturnNode(F)]) { cerr << F->getName() << ":retval"; return; } else if (F->getFunctionType()->isVarArg() && N == &GraphNodes[getVarargNode(F)]) { cerr << F->getName() << ":vararg"; return; } } if (Instruction *I = dyn_cast(V)) cerr << I->getParent()->getParent()->getName() << ":"; else if (Argument *Arg = dyn_cast(V)) cerr << Arg->getParent()->getName() << ":"; if (V->hasName()) cerr << V->getName(); else cerr << "(unnamed)"; if (isa(V) || isa(V)) if (N == &GraphNodes[getObject(V)]) cerr << ""; } void Andersens::PrintConstraints() { cerr << "Constraints:\n"; for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { const Constraint &C = Constraints[i]; if (C.Type == Constraint::Store) { cerr << "*"; if (C.Offset != 0) cerr << "("; } PrintNode(&GraphNodes[C.Dest]); if (C.Type == Constraint::Store && C.Offset != 0) cerr << " + " << C.Offset << ")"; cerr << " = "; if (C.Type == Constraint::Load) { cerr << "*"; if (C.Offset != 0) cerr << "("; } else if (C.Type == Constraint::AddressOf) cerr << "&"; PrintNode(&GraphNodes[C.Src]); if (C.Offset != 0 && C.Type != Constraint::Store) cerr << " + " << C.Offset; if (C.Type == Constraint::Load && C.Offset != 0) cerr << ")"; cerr << "\n"; } } void Andersens::PrintPointsToGraph() { cerr << "Points-to graph:\n"; for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) { Node *N = &GraphNodes[i]; if (FindNode (i) != i) { PrintNode(N); cerr << "\t--> same as "; PrintNode(&GraphNodes[FindNode(i)]); cerr << "\n"; } else { cerr << "[" << (N->PointsTo->count()) << "] "; PrintNode(N); cerr << "\t--> "; bool first = true; for (SparseBitVector<>::iterator bi = N->PointsTo->begin(); bi != N->PointsTo->end(); ++bi) { if (!first) cerr << ", "; PrintNode(&GraphNodes[*bi]); first = false; } cerr << "\n"; } } }