//===- llvm/System/Unix/Program.cpp -----------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Unix specific portion of the Program class. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// //=== WARNING: Implementation here must contain only generic UNIX code that //=== is guaranteed to work on *all* UNIX variants. //===----------------------------------------------------------------------===// #include #include "Unix.h" #if HAVE_SYS_STAT_H #include #endif #if HAVE_SYS_RESOURCE_H #include #endif #if HAVE_SIGNAL_H #include #endif #if HAVE_FCNTL_H #include #endif namespace llvm { using namespace sys; Program::Program() : Data_(0) {} Program::~Program() {} unsigned Program::GetPid() const { uint64_t pid = reinterpret_cast(Data_); return static_cast(pid); } // This function just uses the PATH environment variable to find the program. Path Program::FindProgramByName(const std::string& progName) { // Check some degenerate cases if (progName.length() == 0) // no program return Path(); Path temp; if (!temp.set(progName)) // invalid name return Path(); // Use the given path verbatim if it contains any slashes; this matches // the behavior of sh(1) and friends. if (progName.find('/') != std::string::npos) return temp; // At this point, the file name does not contain slashes. Search for it // through the directories specified in the PATH environment variable. // Get the path. If its empty, we can't do anything to find it. const char *PathStr = getenv("PATH"); if (PathStr == 0) return Path(); // Now we have a colon separated list of directories to search; try them. size_t PathLen = strlen(PathStr); while (PathLen) { // Find the first colon... const char *Colon = std::find(PathStr, PathStr+PathLen, ':'); // Check to see if this first directory contains the executable... Path FilePath; if (FilePath.set(std::string(PathStr,Colon))) { FilePath.appendComponent(progName); if (FilePath.canExecute()) return FilePath; // Found the executable! } // Nope it wasn't in this directory, check the next path in the list! PathLen -= Colon-PathStr; PathStr = Colon; // Advance past duplicate colons while (*PathStr == ':') { PathStr++; PathLen--; } } return Path(); } static bool RedirectIO(const Path *Path, int FD, std::string* ErrMsg) { if (Path == 0) // Noop return false; std::string File; if (Path->isEmpty()) // Redirect empty paths to /dev/null File = "/dev/null"; else File = Path->str(); // Open the file int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY|O_CREAT, 0666); if (InFD == -1) { MakeErrMsg(ErrMsg, "Cannot open file '" + File + "' for " + (FD == 0 ? "input" : "output")); return true; } // Install it as the requested FD if (dup2(InFD, FD) == -1) { MakeErrMsg(ErrMsg, "Cannot dup2"); close(InFD); return true; } close(InFD); // Close the original FD return false; } static void TimeOutHandler(int Sig) { } static void SetMemoryLimits (unsigned size) { #if HAVE_SYS_RESOURCE_H && HAVE_GETRLIMIT && HAVE_SETRLIMIT struct rlimit r; __typeof__ (r.rlim_cur) limit = (__typeof__ (r.rlim_cur)) (size) * 1048576; // Heap size getrlimit (RLIMIT_DATA, &r); r.rlim_cur = limit; setrlimit (RLIMIT_DATA, &r); #ifdef RLIMIT_RSS // Resident set size. getrlimit (RLIMIT_RSS, &r); r.rlim_cur = limit; setrlimit (RLIMIT_RSS, &r); #endif #ifdef RLIMIT_AS // e.g. NetBSD doesn't have it. // Virtual memory. getrlimit (RLIMIT_AS, &r); r.rlim_cur = limit; setrlimit (RLIMIT_AS, &r); #endif #endif } bool Program::Execute(const Path& path, const char** args, const char** envp, const Path** redirects, unsigned memoryLimit, std::string* ErrMsg) { if (!path.canExecute()) { if (ErrMsg) *ErrMsg = path.str() + " is not executable"; return false; } // Create a child process. int child = fork(); switch (child) { // An error occured: Return to the caller. case -1: MakeErrMsg(ErrMsg, "Couldn't fork"); return false; // Child process: Execute the program. case 0: { // Redirect file descriptors... if (redirects) { // Redirect stdin if (RedirectIO(redirects[0], 0, ErrMsg)) { return false; } // Redirect stdout if (RedirectIO(redirects[1], 1, ErrMsg)) { return false; } if (redirects[1] && redirects[2] && *(redirects[1]) == *(redirects[2])) { // If stdout and stderr should go to the same place, redirect stderr // to the FD already open for stdout. if (-1 == dup2(1,2)) { MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout"); return false; } } else { // Just redirect stderr if (RedirectIO(redirects[2], 2, ErrMsg)) { return false; } } } // Set memory limits if (memoryLimit!=0) { SetMemoryLimits(memoryLimit); } // Execute! if (envp != 0) execve(path.c_str(), (char**)args, (char**)envp); else execv(path.c_str(), (char**)args); // If the execve() failed, we should exit. Follow Unix protocol and // return 127 if the executable was not found, and 126 otherwise. // Use _exit rather than exit so that atexit functions and static // object destructors cloned from the parent process aren't // redundantly run, and so that any data buffered in stdio buffers // cloned from the parent aren't redundantly written out. _exit(errno == ENOENT ? 127 : 126); } // Parent process: Break out of the switch to do our processing. default: break; } Data_ = reinterpret_cast(child); return true; } int Program::Wait(unsigned secondsToWait, std::string* ErrMsg) { #ifdef HAVE_SYS_WAIT_H struct sigaction Act, Old; if (Data_ == 0) { MakeErrMsg(ErrMsg, "Process not started!"); return -1; } // Install a timeout handler. The handler itself does nothing, but the simple // fact of having a handler at all causes the wait below to return with EINTR, // unlike if we used SIG_IGN. if (secondsToWait) { #ifndef __HAIKU__ Act.sa_sigaction = 0; #endif Act.sa_handler = TimeOutHandler; sigemptyset(&Act.sa_mask); Act.sa_flags = 0; sigaction(SIGALRM, &Act, &Old); alarm(secondsToWait); } // Parent process: Wait for the child process to terminate. int status; uint64_t pid = reinterpret_cast(Data_); pid_t child = static_cast(pid); while (waitpid(pid, &status, 0) != child) if (secondsToWait && errno == EINTR) { // Kill the child. kill(child, SIGKILL); // Turn off the alarm and restore the signal handler alarm(0); sigaction(SIGALRM, &Old, 0); // Wait for child to die if (wait(&status) != child) MakeErrMsg(ErrMsg, "Child timed out but wouldn't die"); else MakeErrMsg(ErrMsg, "Child timed out", 0); return -1; // Timeout detected } else if (errno != EINTR) { MakeErrMsg(ErrMsg, "Error waiting for child process"); return -1; } // We exited normally without timeout, so turn off the timer. if (secondsToWait) { alarm(0); sigaction(SIGALRM, &Old, 0); } // Return the proper exit status. 0=success, >0 is programs' exit status, // <0 means a signal was returned, -9999999 means the program dumped core. int result = 0; if (WIFEXITED(status)) result = WEXITSTATUS(status); else if (WIFSIGNALED(status)) result = 0 - WTERMSIG(status); #ifdef WCOREDUMP else if (WCOREDUMP(status)) result |= 0x01000000; #endif return result; #else return -99; #endif } bool Program::Kill(std::string* ErrMsg) { if (Data_ == 0) { MakeErrMsg(ErrMsg, "Process not started!"); return true; } uint64_t pid64 = reinterpret_cast(Data_); pid_t pid = static_cast(pid64); if (kill(pid, SIGKILL) != 0) { MakeErrMsg(ErrMsg, "The process couldn't be killed!"); return true; } return false; } bool Program::ChangeStdinToBinary(){ // Do nothing, as Unix doesn't differentiate between text and binary. return false; } bool Program::ChangeStdoutToBinary(){ // Do nothing, as Unix doesn't differentiate between text and binary. return false; } bool Program::ChangeStderrToBinary(){ // Do nothing, as Unix doesn't differentiate between text and binary. return false; } }