//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SelectionDAG::Legalize method. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetOptions.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include using namespace llvm; //===----------------------------------------------------------------------===// /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and /// hacks on it until the target machine can handle it. This involves /// eliminating value sizes the machine cannot handle (promoting small sizes to /// large sizes or splitting up large values into small values) as well as /// eliminating operations the machine cannot handle. /// /// This code also does a small amount of optimization and recognition of idioms /// as part of its processing. For example, if a target does not support a /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this /// will attempt merge setcc and brc instructions into brcc's. /// namespace { class SelectionDAGLegalize { TargetLowering &TLI; SelectionDAG &DAG; /// LegalizeAction - This enum indicates what action we should take for each /// value type the can occur in the program. enum LegalizeAction { Legal, // The target natively supports this value type. Promote, // This should be promoted to the next larger type. Expand, // This integer type should be broken into smaller pieces. }; /// ValueTypeActions - This is a bitvector that contains two bits for each /// value type, where the two bits correspond to the LegalizeAction enum. /// This can be queried with "getTypeAction(VT)". unsigned ValueTypeActions; /// NeedsAnotherIteration - This is set when we expand a large integer /// operation into smaller integer operations, but the smaller operations are /// not set. This occurs only rarely in practice, for targets that don't have /// 32-bit or larger integer registers. bool NeedsAnotherIteration; /// LegalizedNodes - For nodes that are of legal width, and that have more /// than one use, this map indicates what regularized operand to use. This /// allows us to avoid legalizing the same thing more than once. std::map LegalizedNodes; /// PromotedNodes - For nodes that are below legal width, and that have more /// than one use, this map indicates what promoted value to use. This allows /// us to avoid promoting the same thing more than once. std::map PromotedNodes; /// ExpandedNodes - For nodes that need to be expanded, and which have more /// than one use, this map indicates which which operands are the expanded /// version of the input. This allows us to avoid expanding the same node /// more than once. std::map > ExpandedNodes; void AddLegalizedOperand(SDOperand From, SDOperand To) { bool isNew = LegalizedNodes.insert(std::make_pair(From, To)).second; assert(isNew && "Got into the map somehow?"); } void AddPromotedOperand(SDOperand From, SDOperand To) { bool isNew = PromotedNodes.insert(std::make_pair(From, To)).second; assert(isNew && "Got into the map somehow?"); } public: SelectionDAGLegalize(SelectionDAG &DAG); /// Run - While there is still lowering to do, perform a pass over the DAG. /// Most regularization can be done in a single pass, but targets that require /// large values to be split into registers multiple times (e.g. i64 -> 4x /// i16) require iteration for these values (the first iteration will demote /// to i32, the second will demote to i16). void Run() { do { NeedsAnotherIteration = false; LegalizeDAG(); } while (NeedsAnotherIteration); } /// getTypeAction - Return how we should legalize values of this type, either /// it is already legal or we need to expand it into multiple registers of /// smaller integer type, or we need to promote it to a larger type. LegalizeAction getTypeAction(MVT::ValueType VT) const { return (LegalizeAction)((ValueTypeActions >> (2*VT)) & 3); } /// isTypeLegal - Return true if this type is legal on this target. /// bool isTypeLegal(MVT::ValueType VT) const { return getTypeAction(VT) == Legal; } private: void LegalizeDAG(); SDOperand LegalizeOp(SDOperand O); void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); SDOperand PromoteOp(SDOperand O); SDOperand ExpandLibCall(const char *Name, SDNode *Node, SDOperand &Hi); SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source); SDOperand ExpandLegalUINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT); SDOperand PromoteLegalUINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT); bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, SDOperand &Lo, SDOperand &Hi); void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, SDOperand &Lo, SDOperand &Hi); void ExpandByParts(unsigned NodeOp, SDOperand LHS, SDOperand RHS, SDOperand &Lo, SDOperand &Hi); void SpliceCallInto(const SDOperand &CallResult, SDNode *OutChain); SDOperand getIntPtrConstant(uint64_t Val) { return DAG.getConstant(Val, TLI.getPointerTy()); } }; } SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) : TLI(dag.getTargetLoweringInfo()), DAG(dag), ValueTypeActions(TLI.getValueTypeActions()) { assert(MVT::LAST_VALUETYPE <= 16 && "Too many value types for ValueTypeActions to hold!"); } /// ExpandLegalUINT_TO_FP - This function is responsible for legalizing a /// UINT_TO_FP operation of the specified operand when the target requests that /// we expand it. At this point, we know that the result and operand types are /// legal for the target. SDOperand SelectionDAGLegalize::ExpandLegalUINT_TO_FP(SDOperand Op0, MVT::ValueType DestVT) { assert(Op0.getValueType() == MVT::i32 && "This code only works for i32 input: extend in the future"); SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); SDOperand SignSet = DAG.getSetCC(ISD::SETLT, TLI.getSetCCResultTy(), Op0, DAG.getConstant(0, Op0.getValueType())); SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4); SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), SignSet, Four, Zero); uint64_t FF = 0x5f800000ULL; if (TLI.isLittleEndian()) FF <<= 32; static Constant *FudgeFactor = ConstantUInt::get(Type::ULongTy, FF); MachineConstantPool *CP = DAG.getMachineFunction().getConstantPool(); SDOperand CPIdx = DAG.getConstantPool(CP->getConstantPoolIndex(FudgeFactor), TLI.getPointerTy()); CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); SDOperand FudgeInReg; if (DestVT == MVT::f32) FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); else { assert(DestVT == MVT::f64 && "Unexpected conversion"); FudgeInReg = LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL), MVT::f32)); } NeedsAnotherIteration = true; return DAG.getNode(ISD::ADD, DestVT, Tmp1, FudgeInReg); } /// PromoteLegalUINT_TO_FP - This function is responsible for legalizing a /// UINT_TO_FP operation of the specified operand when the target requests that /// we promote it. At this point, we know that the result and operand types are /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP /// operation that takes a larger input. SDOperand SelectionDAGLegalize::PromoteLegalUINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT) { // First step, figure out the appropriate *INT_TO_FP operation to use. MVT::ValueType NewInTy = LegalOp.getValueType(); unsigned OpToUse = 0; // Scan for the appropriate larger type to use. while (1) { NewInTy = (MVT::ValueType)(NewInTy+1); assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); // If the target supports SINT_TO_FP of this type, use it. switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { default: break; case TargetLowering::Legal: if (!TLI.hasNativeSupportFor(NewInTy)) break; // Can't use this datatype. // FALL THROUGH. case TargetLowering::Custom: OpToUse = ISD::SINT_TO_FP; break; } if (OpToUse) break; // If the target supports UINT_TO_FP of this type, use it. switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { default: break; case TargetLowering::Legal: if (!TLI.hasNativeSupportFor(NewInTy)) break; // Can't use this datatype. // FALL THROUGH. case TargetLowering::Custom: OpToUse = ISD::UINT_TO_FP; break; } if (OpToUse) break; // Otherwise, try a larger type. } // Make sure to legalize any nodes we create here in the next pass. NeedsAnotherIteration = true; // Okay, we found the operation and type to use. Zero extend our input to the // desired type then run the operation on it. return DAG.getNode(OpToUse, DestVT, DAG.getNode(ISD::ZERO_EXTEND, NewInTy, LegalOp)); } void SelectionDAGLegalize::LegalizeDAG() { SDOperand OldRoot = DAG.getRoot(); SDOperand NewRoot = LegalizeOp(OldRoot); DAG.setRoot(NewRoot); ExpandedNodes.clear(); LegalizedNodes.clear(); PromotedNodes.clear(); // Remove dead nodes now. DAG.RemoveDeadNodes(OldRoot.Val); } SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { assert(getTypeAction(Op.getValueType()) == Legal && "Caller should expand or promote operands that are not legal!"); SDNode *Node = Op.Val; // If this operation defines any values that cannot be represented in a // register on this target, make sure to expand or promote them. if (Node->getNumValues() > 1) { for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) switch (getTypeAction(Node->getValueType(i))) { case Legal: break; // Nothing to do. case Expand: { SDOperand T1, T2; ExpandOp(Op.getValue(i), T1, T2); assert(LegalizedNodes.count(Op) && "Expansion didn't add legal operands!"); return LegalizedNodes[Op]; } case Promote: PromoteOp(Op.getValue(i)); assert(LegalizedNodes.count(Op) && "Expansion didn't add legal operands!"); return LegalizedNodes[Op]; } } // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. std::map::iterator I = LegalizedNodes.find(Op); if (I != LegalizedNodes.end()) return I->second; SDOperand Tmp1, Tmp2, Tmp3; SDOperand Result = Op; switch (Node->getOpcode()) { default: if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { // If this is a target node, legalize it by legalizing the operands then // passing it through. std::vector Ops; bool Changed = false; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { Ops.push_back(LegalizeOp(Node->getOperand(i))); Changed = Changed || Node->getOperand(i) != Ops.back(); } if (Changed) if (Node->getNumValues() == 1) Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Ops); else { std::vector VTs(Node->value_begin(), Node->value_end()); Result = DAG.getNode(Node->getOpcode(), VTs, Ops); } for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); return Result.getValue(Op.ResNo); } // Otherwise this is an unhandled builtin node. splat. std::cerr << "NODE: "; Node->dump(); std::cerr << "\n"; assert(0 && "Do not know how to legalize this operator!"); abort(); case ISD::EntryToken: case ISD::FrameIndex: case ISD::GlobalAddress: case ISD::ExternalSymbol: case ISD::ConstantPool: // Nothing to do. assert(getTypeAction(Node->getValueType(0)) == Legal && "This must be legal!"); break; case ISD::CopyFromReg: Tmp1 = LegalizeOp(Node->getOperand(0)); if (Tmp1 != Node->getOperand(0)) Result = DAG.getCopyFromReg(cast(Node)->getReg(), Node->getValueType(0), Tmp1); else Result = Op.getValue(0); // Since CopyFromReg produces two values, make sure to remember that we // legalized both of them. AddLegalizedOperand(Op.getValue(0), Result); AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); return Result.getValue(Op.ResNo); case ISD::ImplicitDef: Tmp1 = LegalizeOp(Node->getOperand(0)); if (Tmp1 != Node->getOperand(0)) Result = DAG.getImplicitDef(Tmp1, cast(Node)->getReg()); break; case ISD::UNDEF: { MVT::ValueType VT = Op.getValueType(); switch (TLI.getOperationAction(ISD::UNDEF, VT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Expand: case TargetLowering::Promote: if (MVT::isInteger(VT)) Result = DAG.getConstant(0, VT); else if (MVT::isFloatingPoint(VT)) Result = DAG.getConstantFP(0, VT); else assert(0 && "Unknown value type!"); break; case TargetLowering::Legal: break; } break; } case ISD::Constant: // We know we don't need to expand constants here, constants only have one // value and we check that it is fine above. // FIXME: Maybe we should handle things like targets that don't support full // 32-bit immediates? break; case ISD::ConstantFP: { // Spill FP immediates to the constant pool if the target cannot directly // codegen them. Targets often have some immediate values that can be // efficiently generated into an FP register without a load. We explicitly // leave these constants as ConstantFP nodes for the target to deal with. ConstantFPSDNode *CFP = cast(Node); // Check to see if this FP immediate is already legal. bool isLegal = false; for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), E = TLI.legal_fpimm_end(); I != E; ++I) if (CFP->isExactlyValue(*I)) { isLegal = true; break; } if (!isLegal) { // Otherwise we need to spill the constant to memory. MachineConstantPool *CP = DAG.getMachineFunction().getConstantPool(); bool Extend = false; // If a FP immediate is precise when represented as a float, we put it // into the constant pool as a float, even if it's is statically typed // as a double. MVT::ValueType VT = CFP->getValueType(0); bool isDouble = VT == MVT::f64; ConstantFP *LLVMC = ConstantFP::get(isDouble ? Type::DoubleTy : Type::FloatTy, CFP->getValue()); if (isDouble && CFP->isExactlyValue((float)CFP->getValue()) && // Only do this if the target has a native EXTLOAD instruction from // f32. TLI.getOperationAction(ISD::EXTLOAD, MVT::f32) == TargetLowering::Legal) { LLVMC = cast(ConstantExpr::getCast(LLVMC, Type::FloatTy)); VT = MVT::f32; Extend = true; } SDOperand CPIdx = DAG.getConstantPool(CP->getConstantPoolIndex(LLVMC), TLI.getPointerTy()); if (Extend) { Result = DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL), MVT::f32); } else { Result = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); } } break; } case ISD::TokenFactor: { std::vector Ops; bool Changed = false; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { SDOperand Op = Node->getOperand(i); // Fold single-use TokenFactor nodes into this token factor as we go. // FIXME: This is something that the DAGCombiner should do!! if (Op.getOpcode() == ISD::TokenFactor && Op.hasOneUse()) { Changed = true; for (unsigned j = 0, e = Op.getNumOperands(); j != e; ++j) Ops.push_back(LegalizeOp(Op.getOperand(j))); } else { Ops.push_back(LegalizeOp(Op)); // Legalize the operands Changed |= Ops[i] != Op; } } if (Changed) Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Ops); break; } case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. // Do not try to legalize the target-specific arguments (#1+) Tmp2 = Node->getOperand(0); if (Tmp1 != Tmp2) { Node->setAdjCallChain(Tmp1); // If moving the operand from pointing to Tmp2 dropped its use count to 1, // this will cause the maps used to memoize results to get confused. // Create and add a dummy use, just to increase its use count. This will // be removed at the end of legalize when dead nodes are removed. if (Tmp2.Val->hasOneUse()) DAG.getNode(ISD::PCMARKER, MVT::Other, Tmp2, DAG.getConstant(0, MVT::i32)); } // Note that we do not create new CALLSEQ_DOWN/UP nodes here. These // nodes are treated specially and are mutated in place. This makes the dag // legalization process more efficient and also makes libcall insertion // easier. break; case ISD::DYNAMIC_STACKALLOC: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1) || Tmp3 != Node->getOperand(2)) { std::vector VTs(Node->value_begin(), Node->value_end()); std::vector Ops; Ops.push_back(Tmp1); Ops.push_back(Tmp2); Ops.push_back(Tmp3); Result = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops); } else Result = Op.getValue(0); // Since this op produces two values, make sure to remember that we // legalized both of them. AddLegalizedOperand(SDOperand(Node, 0), Result); AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); return Result.getValue(Op.ResNo); case ISD::TAILCALL: case ISD::CALL: { Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the callee. bool Changed = false; std::vector Ops; for (unsigned i = 2, e = Node->getNumOperands(); i != e; ++i) { Ops.push_back(LegalizeOp(Node->getOperand(i))); Changed |= Ops.back() != Node->getOperand(i); } if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1) || Changed) { std::vector RetTyVTs; RetTyVTs.reserve(Node->getNumValues()); for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) RetTyVTs.push_back(Node->getValueType(i)); Result = SDOperand(DAG.getCall(RetTyVTs, Tmp1, Tmp2, Ops, Node->getOpcode() == ISD::TAILCALL), 0); } else { Result = Result.getValue(0); } // Since calls produce multiple values, make sure to remember that we // legalized all of them. for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); return Result.getValue(Op.ResNo); } case ISD::BR: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. if (Tmp1 != Node->getOperand(0)) Result = DAG.getNode(ISD::BR, MVT::Other, Tmp1, Node->getOperand(1)); break; case ISD::BRCOND: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. switch (getTypeAction(Node->getOperand(1).getValueType())) { case Expand: assert(0 && "It's impossible to expand bools"); case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. break; case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. break; } // Basic block destination (Op#2) is always legal. if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) Result = DAG.getNode(ISD::BRCOND, MVT::Other, Tmp1, Tmp2, Node->getOperand(2)); break; case ISD::BRCONDTWOWAY: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. switch (getTypeAction(Node->getOperand(1).getValueType())) { case Expand: assert(0 && "It's impossible to expand bools"); case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. break; case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. break; } // If this target does not support BRCONDTWOWAY, lower it to a BRCOND/BR // pair. switch (TLI.getOperationAction(ISD::BRCONDTWOWAY, MVT::Other)) { case TargetLowering::Promote: default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) { std::vector Ops; Ops.push_back(Tmp1); Ops.push_back(Tmp2); Ops.push_back(Node->getOperand(2)); Ops.push_back(Node->getOperand(3)); Result = DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops); } break; case TargetLowering::Expand: Result = DAG.getNode(ISD::BRCOND, MVT::Other, Tmp1, Tmp2, Node->getOperand(2)); Result = DAG.getNode(ISD::BR, MVT::Other, Result, Node->getOperand(3)); break; } break; case ISD::LOAD: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) Result = DAG.getLoad(Node->getValueType(0), Tmp1, Tmp2, Node->getOperand(2)); else Result = SDOperand(Node, 0); // Since loads produce two values, make sure to remember that we legalized // both of them. AddLegalizedOperand(SDOperand(Node, 0), Result); AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); return Result.getValue(Op.ResNo); case ISD::EXTLOAD: case ISD::SEXTLOAD: case ISD::ZEXTLOAD: { Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. MVT::ValueType SrcVT = cast(Node->getOperand(3))->getVT(); switch (TLI.getOperationAction(Node->getOpcode(), SrcVT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Promote: assert(SrcVT == MVT::i1 && "Can only promote EXTLOAD from i1 -> i8!"); Result = DAG.getExtLoad(Node->getOpcode(), Node->getValueType(0), Tmp1, Tmp2, Node->getOperand(2), MVT::i8); // Since loads produce two values, make sure to remember that we legalized // both of them. AddLegalizedOperand(SDOperand(Node, 0), Result); AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); return Result.getValue(Op.ResNo); case TargetLowering::Legal: if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) Result = DAG.getExtLoad(Node->getOpcode(), Node->getValueType(0), Tmp1, Tmp2, Node->getOperand(2), SrcVT); else Result = SDOperand(Node, 0); // Since loads produce two values, make sure to remember that we legalized // both of them. AddLegalizedOperand(SDOperand(Node, 0), Result); AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); return Result.getValue(Op.ResNo); case TargetLowering::Expand: //f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, Node->getOperand(2)); Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); if (Op.ResNo) return Load.getValue(1); return Result; } assert(Node->getOpcode() != ISD::EXTLOAD && "EXTLOAD should always be supported!"); // Turn the unsupported load into an EXTLOAD followed by an explicit // zero/sign extend inreg. Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), Tmp1, Tmp2, Node->getOperand(2), SrcVT); SDOperand ValRes; if (Node->getOpcode() == ISD::SEXTLOAD) ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), Result, DAG.getValueType(SrcVT)); else ValRes = DAG.getZeroExtendInReg(Result, SrcVT); AddLegalizedOperand(SDOperand(Node, 0), ValRes); AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); if (Op.ResNo) return Result.getValue(1); return ValRes; } assert(0 && "Unreachable"); } case ISD::EXTRACT_ELEMENT: // Get both the low and high parts. ExpandOp(Node->getOperand(0), Tmp1, Tmp2); if (cast(Node->getOperand(1))->getValue()) Result = Tmp2; // 1 -> Hi else Result = Tmp1; // 0 -> Lo break; case ISD::CopyToReg: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. switch (getTypeAction(Node->getOperand(1).getValueType())) { case Legal: // Legalize the incoming value (must be legal). Tmp2 = LegalizeOp(Node->getOperand(1)); if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) Result = DAG.getCopyToReg(Tmp1, Tmp2, cast(Node)->getReg()); break; case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); Result = DAG.getCopyToReg(Tmp1, Tmp2, cast(Node)->getReg()); break; case Expand: SDOperand Lo, Hi; ExpandOp(Node->getOperand(1), Lo, Hi); unsigned Reg = cast(Node)->getReg(); Lo = DAG.getCopyToReg(Tmp1, Lo, Reg); Hi = DAG.getCopyToReg(Tmp1, Hi, Reg+1); // Note that the copytoreg nodes are independent of each other. Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); assert(isTypeLegal(Result.getValueType()) && "Cannot expand multiple times yet (i64 -> i16)"); break; } break; case ISD::RET: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. switch (Node->getNumOperands()) { case 2: // ret val switch (getTypeAction(Node->getOperand(1).getValueType())) { case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Tmp2); break; case Expand: { SDOperand Lo, Hi; ExpandOp(Node->getOperand(1), Lo, Hi); Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Hi); break; } case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Tmp2); break; } break; case 1: // ret void if (Tmp1 != Node->getOperand(0)) Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1); break; default: { // ret std::vector NewValues; NewValues.push_back(Tmp1); for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) switch (getTypeAction(Node->getOperand(i).getValueType())) { case Legal: NewValues.push_back(LegalizeOp(Node->getOperand(i))); break; case Expand: { SDOperand Lo, Hi; ExpandOp(Node->getOperand(i), Lo, Hi); NewValues.push_back(Lo); NewValues.push_back(Hi); break; } case Promote: assert(0 && "Can't promote multiple return value yet!"); } Result = DAG.getNode(ISD::RET, MVT::Other, NewValues); break; } } break; case ISD::STORE: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(2)); // Legalize the pointer. // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' if (ConstantFPSDNode *CFP =dyn_cast(Node->getOperand(1))){ if (CFP->getValueType(0) == MVT::f32) { union { unsigned I; float F; } V; V.F = CFP->getValue(); Result = DAG.getNode(ISD::STORE, MVT::Other, Tmp1, DAG.getConstant(V.I, MVT::i32), Tmp2, Node->getOperand(3)); } else { assert(CFP->getValueType(0) == MVT::f64 && "Unknown FP type!"); union { uint64_t I; double F; } V; V.F = CFP->getValue(); Result = DAG.getNode(ISD::STORE, MVT::Other, Tmp1, DAG.getConstant(V.I, MVT::i64), Tmp2, Node->getOperand(3)); } Node = Result.Val; } switch (getTypeAction(Node->getOperand(1).getValueType())) { case Legal: { SDOperand Val = LegalizeOp(Node->getOperand(1)); if (Val != Node->getOperand(1) || Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(2)) Result = DAG.getNode(ISD::STORE, MVT::Other, Tmp1, Val, Tmp2, Node->getOperand(3)); break; } case Promote: // Truncate the value and store the result. Tmp3 = PromoteOp(Node->getOperand(1)); Result = DAG.getNode(ISD::TRUNCSTORE, MVT::Other, Tmp1, Tmp3, Tmp2, Node->getOperand(3), DAG.getValueType(Node->getOperand(1).getValueType())); break; case Expand: SDOperand Lo, Hi; ExpandOp(Node->getOperand(1), Lo, Hi); if (!TLI.isLittleEndian()) std::swap(Lo, Hi); Lo = DAG.getNode(ISD::STORE, MVT::Other, Tmp1, Lo, Tmp2, Node->getOperand(3)); unsigned IncrementSize = MVT::getSizeInBits(Hi.getValueType())/8; Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, getIntPtrConstant(IncrementSize)); assert(isTypeLegal(Tmp2.getValueType()) && "Pointers must be legal!"); //Again, claiming both parts of the store came form the same Instr Hi = DAG.getNode(ISD::STORE, MVT::Other, Tmp1, Hi, Tmp2, Node->getOperand(3)); Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); break; } break; case ISD::PCMARKER: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. if (Tmp1 != Node->getOperand(0)) Result = DAG.getNode(ISD::PCMARKER, MVT::Other, Tmp1,Node->getOperand(1)); break; case ISD::TRUNCSTORE: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the pointer. switch (getTypeAction(Node->getOperand(1).getValueType())) { case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1) || Tmp3 != Node->getOperand(2)) Result = DAG.getNode(ISD::TRUNCSTORE, MVT::Other, Tmp1, Tmp2, Tmp3, Node->getOperand(3), Node->getOperand(4)); break; case Promote: case Expand: assert(0 && "Cannot handle illegal TRUNCSTORE yet!"); } break; case ISD::SELECT: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "It's impossible to expand bools"); case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. break; case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. break; } Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal switch (TLI.getOperationAction(Node->getOpcode(), Tmp2.getValueType())) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1) || Tmp3 != Node->getOperand(2)) Result = DAG.getNode(ISD::SELECT, Node->getValueType(0), Tmp1, Tmp2, Tmp3); break; case TargetLowering::Promote: { MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); unsigned ExtOp, TruncOp; if (MVT::isInteger(Tmp2.getValueType())) { ExtOp = ISD::ZERO_EXTEND; TruncOp = ISD::TRUNCATE; } else { ExtOp = ISD::FP_EXTEND; TruncOp = ISD::FP_ROUND; } // Promote each of the values to the new type. Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); // Perform the larger operation, then round down. Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); break; } } break; case ISD::SETCC: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) Result = DAG.getSetCC(cast(Node)->getCondition(), Node->getValueType(0), Tmp1, Tmp2); break; case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); // LHS Tmp2 = PromoteOp(Node->getOperand(1)); // RHS // If this is an FP compare, the operands have already been extended. if (MVT::isInteger(Node->getOperand(0).getValueType())) { MVT::ValueType VT = Node->getOperand(0).getValueType(); MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); // Otherwise, we have to insert explicit sign or zero extends. Note // that we could insert sign extends for ALL conditions, but zero extend // is cheaper on many machines (an AND instead of two shifts), so prefer // it. switch (cast(Node)->getCondition()) { default: assert(0 && "Unknown integer comparison!"); case ISD::SETEQ: case ISD::SETNE: case ISD::SETUGE: case ISD::SETUGT: case ISD::SETULE: case ISD::SETULT: // ALL of these operations will work if we either sign or zero extend // the operands (including the unsigned comparisons!). Zero extend is // usually a simpler/cheaper operation, so prefer it. Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); break; case ISD::SETGE: case ISD::SETGT: case ISD::SETLT: case ISD::SETLE: Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, DAG.getValueType(VT)); Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, DAG.getValueType(VT)); break; } } Result = DAG.getSetCC(cast(Node)->getCondition(), Node->getValueType(0), Tmp1, Tmp2); break; case Expand: SDOperand LHSLo, LHSHi, RHSLo, RHSHi; ExpandOp(Node->getOperand(0), LHSLo, LHSHi); ExpandOp(Node->getOperand(1), RHSLo, RHSHi); switch (cast(Node)->getCondition()) { case ISD::SETEQ: case ISD::SETNE: if (RHSLo == RHSHi) if (ConstantSDNode *RHSCST = dyn_cast(RHSLo)) if (RHSCST->isAllOnesValue()) { // Comparison to -1. Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); Result = DAG.getSetCC(cast(Node)->getCondition(), Node->getValueType(0), Tmp1, RHSLo); break; } Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); Result = DAG.getSetCC(cast(Node)->getCondition(), Node->getValueType(0), Tmp1, DAG.getConstant(0, Tmp1.getValueType())); break; default: // If this is a comparison of the sign bit, just look at the top part. // X > -1, x < 0 if (ConstantSDNode *CST = dyn_cast(Node->getOperand(1))) if ((cast(Node)->getCondition() == ISD::SETLT && CST->getValue() == 0) || // X < 0 (cast(Node)->getCondition() == ISD::SETGT && (CST->isAllOnesValue()))) // X > -1 return DAG.getSetCC(cast(Node)->getCondition(), Node->getValueType(0), LHSHi, RHSHi); // FIXME: This generated code sucks. ISD::CondCode LowCC; switch (cast(Node)->getCondition()) { default: assert(0 && "Unknown integer setcc!"); case ISD::SETLT: case ISD::SETULT: LowCC = ISD::SETULT; break; case ISD::SETGT: case ISD::SETUGT: LowCC = ISD::SETUGT; break; case ISD::SETLE: case ISD::SETULE: LowCC = ISD::SETULE; break; case ISD::SETGE: case ISD::SETUGE: LowCC = ISD::SETUGE; break; } // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; // NOTE: on targets without efficient SELECT of bools, we can always use // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) Tmp1 = DAG.getSetCC(LowCC, Node->getValueType(0), LHSLo, RHSLo); Tmp2 = DAG.getSetCC(cast(Node)->getCondition(), Node->getValueType(0), LHSHi, RHSHi); Result = DAG.getSetCC(ISD::SETEQ, Node->getValueType(0), LHSHi, RHSHi); Result = DAG.getNode(ISD::SELECT, Tmp1.getValueType(), Result, Tmp1, Tmp2); break; } } break; case ISD::MEMSET: case ISD::MEMCPY: case ISD::MEMMOVE: { Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte switch (getTypeAction(Node->getOperand(2).getValueType())) { case Expand: assert(0 && "Cannot expand a byte!"); case Legal: Tmp3 = LegalizeOp(Node->getOperand(2)); break; case Promote: Tmp3 = PromoteOp(Node->getOperand(2)); break; } } else { Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, } SDOperand Tmp4; switch (getTypeAction(Node->getOperand(3).getValueType())) { case Expand: { // Length is too big, just take the lo-part of the length. SDOperand HiPart; ExpandOp(Node->getOperand(3), HiPart, Tmp4); break; } case Legal: Tmp4 = LegalizeOp(Node->getOperand(3)); break; case Promote: Tmp4 = PromoteOp(Node->getOperand(3)); break; } SDOperand Tmp5; switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint case Expand: assert(0 && "Cannot expand this yet!"); case Legal: Tmp5 = LegalizeOp(Node->getOperand(4)); break; case Promote: Tmp5 = PromoteOp(Node->getOperand(4)); break; } switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { default: assert(0 && "This action not implemented for this operation!"); case TargetLowering::Legal: if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1) || Tmp3 != Node->getOperand(2) || Tmp4 != Node->getOperand(3) || Tmp5 != Node->getOperand(4)) { std::vector Ops; Ops.push_back(Tmp1); Ops.push_back(Tmp2); Ops.push_back(Tmp3); Ops.push_back(Tmp4); Ops.push_back(Tmp5); Result = DAG.getNode(Node->getOpcode(), MVT::Other, Ops); } break; case TargetLowering::Expand: { // Otherwise, the target does not support this operation. Lower the // operation to an explicit libcall as appropriate. MVT::ValueType IntPtr = TLI.getPointerTy(); const Type *IntPtrTy = TLI.getTargetData().getIntPtrType(); std::vector > Args; const char *FnName = 0; if (Node->getOpcode() == ISD::MEMSET) { Args.push_back(std::make_pair(Tmp2, IntPtrTy)); // Extend the ubyte argument to be an int value for the call. Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); Args.push_back(std::make_pair(Tmp3, Type::IntTy)); Args.push_back(std::make_pair(Tmp4, IntPtrTy)); FnName = "memset"; } else if (Node->getOpcode() == ISD::MEMCPY || Node->getOpcode() == ISD::MEMMOVE) { Args.push_back(std::make_pair(Tmp2, IntPtrTy)); Args.push_back(std::make_pair(Tmp3, IntPtrTy)); Args.push_back(std::make_pair(Tmp4, IntPtrTy)); FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; } else { assert(0 && "Unknown op!"); } std::pair CallResult = TLI.LowerCallTo(Tmp1, Type::VoidTy, false, CallingConv::C, false, DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); Result = CallResult.second; NeedsAnotherIteration = true; break; } case TargetLowering::Custom: std::vector Ops; Ops.push_back(Tmp1); Ops.push_back(Tmp2); Ops.push_back(Tmp3); Ops.push_back(Tmp4); Ops.push_back(Tmp5); Result = DAG.getNode(Node->getOpcode(), MVT::Other, Ops); Result = TLI.LowerOperation(Result, DAG); Result = LegalizeOp(Result); break; } break; } case ISD::READPORT: Tmp1 = LegalizeOp(Node->getOperand(0)); Tmp2 = LegalizeOp(Node->getOperand(1)); if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) { std::vector VTs(Node->value_begin(), Node->value_end()); std::vector Ops; Ops.push_back(Tmp1); Ops.push_back(Tmp2); Result = DAG.getNode(ISD::READPORT, VTs, Ops); } else Result = SDOperand(Node, 0); // Since these produce two values, make sure to remember that we legalized // both of them. AddLegalizedOperand(SDOperand(Node, 0), Result); AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); return Result.getValue(Op.ResNo); case ISD::WRITEPORT: Tmp1 = LegalizeOp(Node->getOperand(0)); Tmp2 = LegalizeOp(Node->getOperand(1)); Tmp3 = LegalizeOp(Node->getOperand(2)); if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1) || Tmp3 != Node->getOperand(2)) Result = DAG.getNode(Node->getOpcode(), MVT::Other, Tmp1, Tmp2, Tmp3); break; case ISD::READIO: Tmp1 = LegalizeOp(Node->getOperand(0)); Tmp2 = LegalizeOp(Node->getOperand(1)); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { case TargetLowering::Custom: default: assert(0 && "This action not implemented for this operation!"); case TargetLowering::Legal: if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) { std::vector VTs(Node->value_begin(), Node->value_end()); std::vector Ops; Ops.push_back(Tmp1); Ops.push_back(Tmp2); Result = DAG.getNode(ISD::READPORT, VTs, Ops); } else Result = SDOperand(Node, 0); break; case TargetLowering::Expand: // Replace this with a load from memory. Result = DAG.getLoad(Node->getValueType(0), Node->getOperand(0), Node->getOperand(1), DAG.getSrcValue(NULL)); Result = LegalizeOp(Result); break; } // Since these produce two values, make sure to remember that we legalized // both of them. AddLegalizedOperand(SDOperand(Node, 0), Result); AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); return Result.getValue(Op.ResNo); case ISD::WRITEIO: Tmp1 = LegalizeOp(Node->getOperand(0)); Tmp2 = LegalizeOp(Node->getOperand(1)); Tmp3 = LegalizeOp(Node->getOperand(2)); switch (TLI.getOperationAction(Node->getOpcode(), Node->getOperand(1).getValueType())) { case TargetLowering::Custom: default: assert(0 && "This action not implemented for this operation!"); case TargetLowering::Legal: if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1) || Tmp3 != Node->getOperand(2)) Result = DAG.getNode(Node->getOpcode(), MVT::Other, Tmp1, Tmp2, Tmp3); break; case TargetLowering::Expand: // Replace this with a store to memory. Result = DAG.getNode(ISD::STORE, MVT::Other, Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), DAG.getSrcValue(NULL)); Result = LegalizeOp(Result); break; } break; case ISD::ADD_PARTS: case ISD::SUB_PARTS: case ISD::SHL_PARTS: case ISD::SRA_PARTS: case ISD::SRL_PARTS: { std::vector Ops; bool Changed = false; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { Ops.push_back(LegalizeOp(Node->getOperand(i))); Changed |= Ops.back() != Node->getOperand(i); } if (Changed) { std::vector VTs(Node->value_begin(), Node->value_end()); Result = DAG.getNode(Node->getOpcode(), VTs, Ops); } // Since these produce multiple values, make sure to remember that we // legalized all of them. for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); return Result.getValue(Op.ResNo); } // Binary operators case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::MULHS: case ISD::MULHU: case ISD::UDIV: case ISD::SDIV: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SHL: case ISD::SRL: case ISD::SRA: Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS switch (getTypeAction(Node->getOperand(1).getValueType())) { case Expand: assert(0 && "Not possible"); case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. break; case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. break; } if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1,Tmp2); break; case ISD::UREM: case ISD::SREM: Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { case TargetLowering::Legal: if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1, Tmp2); break; case TargetLowering::Promote: case TargetLowering::Custom: assert(0 && "Cannot promote/custom handle this yet!"); case TargetLowering::Expand: { MVT::ValueType VT = Node->getValueType(0); unsigned Opc = (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; Result = DAG.getNode(Opc, VT, Tmp1, Tmp2); Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); } break; } break; case ISD::CTPOP: case ISD::CTTZ: case ISD::CTLZ: Tmp1 = LegalizeOp(Node->getOperand(0)); // Op switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { case TargetLowering::Legal: if (Tmp1 != Node->getOperand(0)) Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); break; case TargetLowering::Promote: { MVT::ValueType OVT = Tmp1.getValueType(); MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); // Zero extend the argument. Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); // Perform the larger operation, then subtract if needed. Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); switch(Node->getOpcode()) { case ISD::CTPOP: Result = Tmp1; break; case ISD::CTTZ: //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) Tmp2 = DAG.getSetCC(ISD::SETEQ, TLI.getSetCCResultTy(), Tmp1, DAG.getConstant(getSizeInBits(NVT), NVT)); Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, DAG.getConstant(getSizeInBits(OVT),NVT), Tmp1); break; case ISD::CTLZ: //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) Result = DAG.getNode(ISD::SUB, NVT, Tmp1, DAG.getConstant(getSizeInBits(NVT) - getSizeInBits(OVT), NVT)); break; } break; } case TargetLowering::Custom: assert(0 && "Cannot custom handle this yet!"); case TargetLowering::Expand: switch(Node->getOpcode()) { case ISD::CTPOP: { static const uint64_t mask[6] = { 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL }; MVT::ValueType VT = Tmp1.getValueType(); MVT::ValueType ShVT = TLI.getShiftAmountTy(); unsigned len = getSizeInBits(VT); for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) Tmp2 = DAG.getConstant(mask[i], VT); Tmp3 = DAG.getConstant(1ULL << i, ShVT); Tmp1 = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Tmp1, Tmp2), DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::SRL, VT, Tmp1, Tmp3), Tmp2)); } Result = Tmp1; break; } case ISD::CTLZ: { /* for now, we do this: x = x | (x >> 1); x = x | (x >> 2); ... x = x | (x >>16); x = x | (x >>32); // for 64-bit input return popcount(~x); but see also: http://www.hackersdelight.org/HDcode/nlz.cc */ MVT::ValueType VT = Tmp1.getValueType(); MVT::ValueType ShVT = TLI.getShiftAmountTy(); unsigned len = getSizeInBits(VT); for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { Tmp3 = DAG.getConstant(1ULL << i, ShVT); Tmp1 = DAG.getNode(ISD::OR, VT, Tmp1, DAG.getNode(ISD::SRL, VT, Tmp1, Tmp3)); } Tmp3 = DAG.getNode(ISD::XOR, VT, Tmp1, DAG.getConstant(~0ULL, VT)); Result = LegalizeOp(DAG.getNode(ISD::CTPOP, VT, Tmp3)); break; } case ISD::CTTZ: { // for now, we use: { return popcount(~x & (x - 1)); } // unless the target has ctlz but not ctpop, in which case we use: // { return 32 - nlz(~x & (x-1)); } // see also http://www.hackersdelight.org/HDcode/ntz.cc MVT::ValueType VT = Tmp1.getValueType(); Tmp2 = DAG.getConstant(~0ULL, VT); Tmp3 = DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::XOR, VT, Tmp1, Tmp2), DAG.getNode(ISD::SUB, VT, Tmp1, DAG.getConstant(1, VT))); // If ISD::CTLZ is legal and CTPOP isn't, then do that instead if (TLI.getOperationAction(ISD::CTPOP, VT) != TargetLowering::Legal && TLI.getOperationAction(ISD::CTLZ, VT) == TargetLowering::Legal) { Result = LegalizeOp(DAG.getNode(ISD::SUB, VT, DAG.getConstant(getSizeInBits(VT), VT), DAG.getNode(ISD::CTLZ, VT, Tmp3))); } else { Result = LegalizeOp(DAG.getNode(ISD::CTPOP, VT, Tmp3)); } break; } default: assert(0 && "Cannot expand this yet!"); break; } break; } break; // Unary operators case ISD::FABS: case ISD::FNEG: case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: Tmp1 = LegalizeOp(Node->getOperand(0)); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { case TargetLowering::Legal: if (Tmp1 != Node->getOperand(0)) Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); break; case TargetLowering::Promote: case TargetLowering::Custom: assert(0 && "Cannot promote/custom handle this yet!"); case TargetLowering::Expand: switch(Node->getOpcode()) { case ISD::FNEG: { // Expand Y = FNEG(X) -> Y = SUB -0.0, X Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); Result = LegalizeOp(DAG.getNode(ISD::SUB, Node->getValueType(0), Tmp2, Tmp1)); break; } case ISD::FABS: { // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). MVT::ValueType VT = Node->getValueType(0); Tmp2 = DAG.getConstantFP(0.0, VT); Tmp2 = DAG.getSetCC(ISD::SETUGT, TLI.getSetCCResultTy(), Tmp1, Tmp2); Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); Result = LegalizeOp(Result); break; } case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: { MVT::ValueType VT = Node->getValueType(0); Type *T = VT == MVT::f32 ? Type::FloatTy : Type::DoubleTy; const char *FnName = 0; switch(Node->getOpcode()) { case ISD::FSQRT: FnName = VT == MVT::f32 ? "sqrtf" : "sqrt"; break; case ISD::FSIN: FnName = VT == MVT::f32 ? "sinf" : "sin"; break; case ISD::FCOS: FnName = VT == MVT::f32 ? "cosf" : "cos"; break; default: assert(0 && "Unreachable!"); } std::vector > Args; Args.push_back(std::make_pair(Tmp1, T)); // FIXME: should use ExpandLibCall! std::pair CallResult = TLI.LowerCallTo(DAG.getEntryNode(), T, false, CallingConv::C, true, DAG.getExternalSymbol(FnName, VT), Args, DAG); Result = LegalizeOp(CallResult.first); break; } default: assert(0 && "Unreachable!"); } break; } break; // Conversion operators. The source and destination have different types. case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case ISD::TRUNCATE: case ISD::FP_EXTEND: case ISD::FP_ROUND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Legal: //still made need to expand if the op is illegal, but the types are legal if (Node->getOpcode() == ISD::UINT_TO_FP) { switch (TLI.getOperationAction(Node->getOpcode(), Node->getOperand(0).getValueType())) { default: assert(0 && "Unknown operation action!"); case TargetLowering::Expand: Result = ExpandLegalUINT_TO_FP(LegalizeOp(Node->getOperand(0)), Node->getValueType(0)); AddLegalizedOperand(Op, Result); return Result; case TargetLowering::Promote: Result = PromoteLegalUINT_TO_FP(LegalizeOp(Node->getOperand(0)), Node->getValueType(0)); AddLegalizedOperand(Op, Result); return Result; case TargetLowering::Legal: break; } } Tmp1 = LegalizeOp(Node->getOperand(0)); if (Tmp1 != Node->getOperand(0)) Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); break; case Expand: if (Node->getOpcode() == ISD::SINT_TO_FP || Node->getOpcode() == ISD::UINT_TO_FP) { Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, Node->getValueType(0), Node->getOperand(0)); break; } else if (Node->getOpcode() == ISD::TRUNCATE) { // In the expand case, we must be dealing with a truncate, because // otherwise the result would be larger than the source. ExpandOp(Node->getOperand(0), Tmp1, Tmp2); // Since the result is legal, we should just be able to truncate the low // part of the source. Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); break; } assert(0 && "Shouldn't need to expand other operators here!"); case Promote: switch (Node->getOpcode()) { case ISD::ZERO_EXTEND: Result = PromoteOp(Node->getOperand(0)); // NOTE: Any extend would work here... Result = DAG.getNode(ISD::ZERO_EXTEND, Op.getValueType(), Result); Result = DAG.getZeroExtendInReg(Result, Node->getOperand(0).getValueType()); break; case ISD::SIGN_EXTEND: Result = PromoteOp(Node->getOperand(0)); // NOTE: Any extend would work here... Result = DAG.getNode(ISD::ZERO_EXTEND, Op.getValueType(), Result); Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), Result, DAG.getValueType(Node->getOperand(0).getValueType())); break; case ISD::TRUNCATE: Result = PromoteOp(Node->getOperand(0)); Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); break; case ISD::FP_EXTEND: Result = PromoteOp(Node->getOperand(0)); if (Result.getValueType() != Op.getValueType()) // Dynamically dead while we have only 2 FP types. Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Result); break; case ISD::FP_ROUND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: Result = PromoteOp(Node->getOperand(0)); Result = DAG.getNode(Node->getOpcode(), Op.getValueType(), Result); break; case ISD::SINT_TO_FP: Result = PromoteOp(Node->getOperand(0)); Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), Result, DAG.getValueType(Node->getOperand(0).getValueType())); Result = DAG.getNode(ISD::SINT_TO_FP, Op.getValueType(), Result); break; case ISD::UINT_TO_FP: Result = PromoteOp(Node->getOperand(0)); Result = DAG.getZeroExtendInReg(Result, Node->getOperand(0).getValueType()); Result = DAG.getNode(ISD::UINT_TO_FP, Op.getValueType(), Result); break; } } break; case ISD::FP_ROUND_INREG: case ISD::SIGN_EXTEND_INREG: { Tmp1 = LegalizeOp(Node->getOperand(0)); MVT::ValueType ExtraVT = cast(Node->getOperand(1))->getVT(); // If this operation is not supported, convert it to a shl/shr or load/store // pair. switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { default: assert(0 && "This action not supported for this op yet!"); case TargetLowering::Legal: if (Tmp1 != Node->getOperand(0)) Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1, DAG.getValueType(ExtraVT)); break; case TargetLowering::Expand: // If this is an integer extend and shifts are supported, do that. if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { // NOTE: we could fall back on load/store here too for targets without // SAR. However, it is doubtful that any exist. unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - MVT::getSizeInBits(ExtraVT); SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); Result = DAG.getNode(ISD::SHL, Node->getValueType(0), Node->getOperand(0), ShiftCst); Result = DAG.getNode(ISD::SRA, Node->getValueType(0), Result, ShiftCst); } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { // The only way we can lower this is to turn it into a STORETRUNC, // EXTLOAD pair, targetting a temporary location (a stack slot). // NOTE: there is a choice here between constantly creating new stack // slots and always reusing the same one. We currently always create // new ones, as reuse may inhibit scheduling. const Type *Ty = MVT::getTypeForValueType(ExtraVT); unsigned TySize = (unsigned)TLI.getTargetData().getTypeSize(Ty); unsigned Align = TLI.getTargetData().getTypeAlignment(Ty); MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align); SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); Result = DAG.getNode(ISD::TRUNCSTORE, MVT::Other, DAG.getEntryNode(), Node->getOperand(0), StackSlot, DAG.getSrcValue(NULL), DAG.getValueType(ExtraVT)); Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), Result, StackSlot, DAG.getSrcValue(NULL), ExtraVT); } else { assert(0 && "Unknown op"); } Result = LegalizeOp(Result); break; } break; } } // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. AddLegalizedOperand(Op, Result); return Result; } /// PromoteOp - Given an operation that produces a value in an invalid type, /// promote it to compute the value into a larger type. The produced value will /// have the correct bits for the low portion of the register, but no guarantee /// is made about the top bits: it may be zero, sign-extended, or garbage. SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { MVT::ValueType VT = Op.getValueType(); MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); assert(getTypeAction(VT) == Promote && "Caller should expand or legalize operands that are not promotable!"); assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && "Cannot promote to smaller type!"); SDOperand Tmp1, Tmp2, Tmp3; SDOperand Result; SDNode *Node = Op.Val; if (!Node->hasOneUse()) { std::map::iterator I = PromotedNodes.find(Op); if (I != PromotedNodes.end()) return I->second; } else { assert(!PromotedNodes.count(Op) && "Repromoted this node??"); } // Promotion needs an optimization step to clean up after it, and is not // careful to avoid operations the target does not support. Make sure that // all generated operations are legalized in the next iteration. NeedsAnotherIteration = true; switch (Node->getOpcode()) { default: std::cerr << "NODE: "; Node->dump(); std::cerr << "\n"; assert(0 && "Do not know how to promote this operator!"); abort(); case ISD::UNDEF: Result = DAG.getNode(ISD::UNDEF, NVT); break; case ISD::Constant: Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); assert(isa(Result) && "Didn't constant fold zext?"); break; case ISD::ConstantFP: Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); assert(isa(Result) && "Didn't constant fold fp_extend?"); break; case ISD::CopyFromReg: Result = DAG.getCopyFromReg(cast(Node)->getReg(), NVT, Node->getOperand(0)); // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); break; case ISD::SETCC: assert(getTypeAction(TLI.getSetCCResultTy()) == Legal && "SetCC type is not legal??"); Result = DAG.getSetCC(cast(Node)->getCondition(), TLI.getSetCCResultTy(), Node->getOperand(0), Node->getOperand(1)); Result = LegalizeOp(Result); break; case ISD::TRUNCATE: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Legal: Result = LegalizeOp(Node->getOperand(0)); assert(Result.getValueType() >= NVT && "This truncation doesn't make sense!"); if (Result.getValueType() > NVT) // Truncate to NVT instead of VT Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); break; case Promote: // The truncation is not required, because we don't guarantee anything // about high bits anyway. Result = PromoteOp(Node->getOperand(0)); break; case Expand: ExpandOp(Node->getOperand(0), Tmp1, Tmp2); // Truncate the low part of the expanded value to the result type Result = DAG.getNode(ISD::TRUNCATE, VT, Tmp1); } break; case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); case Legal: // Input is legal? Just do extend all the way to the larger type. Result = LegalizeOp(Node->getOperand(0)); Result = DAG.getNode(Node->getOpcode(), NVT, Result); break; case Promote: // Promote the reg if it's smaller. Result = PromoteOp(Node->getOperand(0)); // The high bits are not guaranteed to be anything. Insert an extend. if (Node->getOpcode() == ISD::SIGN_EXTEND) Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, DAG.getValueType(Node->getOperand(0).getValueType())); else Result = DAG.getZeroExtendInReg(Result, Node->getOperand(0).getValueType()); break; } break; case ISD::FP_EXTEND: assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); case ISD::FP_ROUND: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "BUG: Cannot expand FP regs!"); case Promote: assert(0 && "Unreachable with 2 FP types!"); case Legal: // Input is legal? Do an FP_ROUND_INREG. Result = LegalizeOp(Node->getOperand(0)); Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, DAG.getValueType(VT)); break; } break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Legal: Result = LegalizeOp(Node->getOperand(0)); // No extra round required here. Result = DAG.getNode(Node->getOpcode(), NVT, Result); break; case Promote: Result = PromoteOp(Node->getOperand(0)); if (Node->getOpcode() == ISD::SINT_TO_FP) Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), Result, DAG.getValueType(Node->getOperand(0).getValueType())); else Result = DAG.getZeroExtendInReg(Result, Node->getOperand(0).getValueType()); // No extra round required here. Result = DAG.getNode(Node->getOpcode(), NVT, Result); break; case Expand: Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, Node->getOperand(0)); // Round if we cannot tolerate excess precision. if (NoExcessFPPrecision) Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, DAG.getValueType(VT)); break; } break; case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; case Promote: // The input result is prerounded, so we don't have to do anything // special. Tmp1 = PromoteOp(Node->getOperand(0)); break; case Expand: assert(0 && "not implemented"); } Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); break; case ISD::FABS: case ISD::FNEG: Tmp1 = PromoteOp(Node->getOperand(0)); assert(Tmp1.getValueType() == NVT); Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); // NOTE: we do not have to do any extra rounding here for // NoExcessFPPrecision, because we know the input will have the appropriate // precision, and these operations don't modify precision at all. break; case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: Tmp1 = PromoteOp(Node->getOperand(0)); assert(Tmp1.getValueType() == NVT); Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); if(NoExcessFPPrecision) Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, DAG.getValueType(VT)); break; case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::ADD: case ISD::SUB: case ISD::MUL: // The input may have strange things in the top bits of the registers, but // these operations don't care. They may have wierd bits going out, but // that too is okay if they are integer operations. Tmp1 = PromoteOp(Node->getOperand(0)); Tmp2 = PromoteOp(Node->getOperand(1)); assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); // However, if this is a floating point operation, they will give excess // precision that we may not be able to tolerate. If we DO allow excess // precision, just leave it, otherwise excise it. // FIXME: Why would we need to round FP ops more than integer ones? // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, DAG.getValueType(VT)); break; case ISD::SDIV: case ISD::SREM: // These operators require that their input be sign extended. Tmp1 = PromoteOp(Node->getOperand(0)); Tmp2 = PromoteOp(Node->getOperand(1)); if (MVT::isInteger(NVT)) { Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, DAG.getValueType(VT)); Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, DAG.getValueType(VT)); } Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); // Perform FP_ROUND: this is probably overly pessimistic. if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, DAG.getValueType(VT)); break; case ISD::UDIV: case ISD::UREM: // These operators require that their input be zero extended. Tmp1 = PromoteOp(Node->getOperand(0)); Tmp2 = PromoteOp(Node->getOperand(1)); assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); break; case ISD::SHL: Tmp1 = PromoteOp(Node->getOperand(0)); Tmp2 = LegalizeOp(Node->getOperand(1)); Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Tmp2); break; case ISD::SRA: // The input value must be properly sign extended. Tmp1 = PromoteOp(Node->getOperand(0)); Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, DAG.getValueType(VT)); Tmp2 = LegalizeOp(Node->getOperand(1)); Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Tmp2); break; case ISD::SRL: // The input value must be properly zero extended. Tmp1 = PromoteOp(Node->getOperand(0)); Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); Tmp2 = LegalizeOp(Node->getOperand(1)); Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Tmp2); break; case ISD::LOAD: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. // FIXME: When the DAG combiner exists, change this to use EXTLOAD! if (MVT::isInteger(NVT)) Result = DAG.getExtLoad(ISD::ZEXTLOAD, NVT, Tmp1, Tmp2, Node->getOperand(2), VT); else Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp1, Tmp2, Node->getOperand(2), VT); // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); break; case ISD::SELECT: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "It's impossible to expand bools"); case Legal: Tmp1 = LegalizeOp(Node->getOperand(0));// Legalize the condition. break; case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. break; } Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2, Tmp3); break; case ISD::TAILCALL: case ISD::CALL: { Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the callee. std::vector Ops; for (unsigned i = 2, e = Node->getNumOperands(); i != e; ++i) Ops.push_back(LegalizeOp(Node->getOperand(i))); assert(Node->getNumValues() == 2 && Op.ResNo == 0 && "Can only promote single result calls"); std::vector RetTyVTs; RetTyVTs.reserve(2); RetTyVTs.push_back(NVT); RetTyVTs.push_back(MVT::Other); SDNode *NC = DAG.getCall(RetTyVTs, Tmp1, Tmp2, Ops, Node->getOpcode() == ISD::TAILCALL); Result = SDOperand(NC, 0); // Insert the new chain mapping. AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); break; } case ISD::CTPOP: case ISD::CTTZ: case ISD::CTLZ: Tmp1 = Node->getOperand(0); //Zero extend the argument Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); // Perform the larger operation, then subtract if needed. Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); switch(Node->getOpcode()) { case ISD::CTPOP: Result = Tmp1; break; case ISD::CTTZ: //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) Tmp2 = DAG.getSetCC(ISD::SETEQ, MVT::i1, Tmp1, DAG.getConstant(getSizeInBits(NVT), NVT)); Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, DAG.getConstant(getSizeInBits(VT),NVT), Tmp1); break; case ISD::CTLZ: //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) Result = DAG.getNode(ISD::SUB, NVT, Tmp1, DAG.getConstant(getSizeInBits(NVT) - getSizeInBits(VT), NVT)); break; } break; } assert(Result.Val && "Didn't set a result!"); AddPromotedOperand(Op, Result); return Result; } /// ExpandAddSub - Find a clever way to expand this add operation into /// subcomponents. void SelectionDAGLegalize:: ExpandByParts(unsigned NodeOp, SDOperand LHS, SDOperand RHS, SDOperand &Lo, SDOperand &Hi) { // Expand the subcomponents. SDOperand LHSL, LHSH, RHSL, RHSH; ExpandOp(LHS, LHSL, LHSH); ExpandOp(RHS, RHSL, RHSH); // FIXME: this should be moved to the dag combiner someday. assert(NodeOp == ISD::ADD_PARTS || NodeOp == ISD::SUB_PARTS); if (LHSL.getValueType() == MVT::i32) { SDOperand LowEl; if (ConstantSDNode *C = dyn_cast(LHSL)) if (C->getValue() == 0) LowEl = RHSL; if (ConstantSDNode *C = dyn_cast(RHSL)) if (C->getValue() == 0) LowEl = LHSL; if (LowEl.Val) { // Turn this into an add/sub of the high part only. SDOperand HiEl = DAG.getNode(NodeOp == ISD::ADD_PARTS ? ISD::ADD : ISD::SUB, LowEl.getValueType(), LHSH, RHSH); Lo = LowEl; Hi = HiEl; return; } } std::vector Ops; Ops.push_back(LHSL); Ops.push_back(LHSH); Ops.push_back(RHSL); Ops.push_back(RHSH); std::vector VTs(2, LHSL.getValueType()); Lo = DAG.getNode(NodeOp, VTs, Ops); Hi = Lo.getValue(1); } void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, SDOperand &Lo, SDOperand &Hi) { // Expand the subcomponents. SDOperand LHSL, LHSH; ExpandOp(Op, LHSL, LHSH); std::vector Ops; Ops.push_back(LHSL); Ops.push_back(LHSH); Ops.push_back(Amt); std::vector VTs; VTs.push_back(LHSL.getValueType()); VTs.push_back(LHSH.getValueType()); VTs.push_back(Amt.getValueType()); Lo = DAG.getNode(NodeOp, VTs, Ops); Hi = Lo.getValue(1); } /// ExpandShift - Try to find a clever way to expand this shift operation out to /// smaller elements. If we can't find a way that is more efficient than a /// libcall on this target, return false. Otherwise, return true with the /// low-parts expanded into Lo and Hi. bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, SDOperand &Lo, SDOperand &Hi) { assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && "This is not a shift!"); MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); SDOperand ShAmt = LegalizeOp(Amt); MVT::ValueType ShTy = ShAmt.getValueType(); unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); unsigned NVTBits = MVT::getSizeInBits(NVT); // Handle the case when Amt is an immediate. Other cases are currently broken // and are disabled. if (ConstantSDNode *CN = dyn_cast(Amt.Val)) { unsigned Cst = CN->getValue(); // Expand the incoming operand to be shifted, so that we have its parts SDOperand InL, InH; ExpandOp(Op, InL, InH); switch(Opc) { case ISD::SHL: if (Cst > VTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getConstant(0, NVT); } else if (Cst > NVTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); } else if (Cst == NVTBits) { Lo = DAG.getConstant(0, NVT); Hi = InL; } else { Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); Hi = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); } return true; case ISD::SRL: if (Cst > VTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getConstant(0, NVT); } else if (Cst > NVTBits) { Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); Hi = DAG.getConstant(0, NVT); } else if (Cst == NVTBits) { Lo = InH; Hi = DAG.getConstant(0, NVT); } else { Lo = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); } return true; case ISD::SRA: if (Cst > VTBits) { Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else if (Cst > NVTBits) { Lo = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst-NVTBits, ShTy)); Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else if (Cst == NVTBits) { Lo = InH; Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else { Lo = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); } return true; } } // FIXME: The following code for expanding shifts using ISD::SELECT is buggy, // so disable it for now. Currently targets are handling this via SHL_PARTS // and friends. return false; // If we have an efficient select operation (or if the selects will all fold // away), lower to some complex code, otherwise just emit the libcall. if (TLI.getOperationAction(ISD::SELECT, NVT) != TargetLowering::Legal && !isa(Amt)) return false; SDOperand InL, InH; ExpandOp(Op, InL, InH); SDOperand NAmt = DAG.getNode(ISD::SUB, ShTy, // NAmt = 32-ShAmt DAG.getConstant(NVTBits, ShTy), ShAmt); // Compare the unmasked shift amount against 32. SDOperand Cond = DAG.getSetCC(ISD::SETGE, TLI.getSetCCResultTy(), ShAmt, DAG.getConstant(NVTBits, ShTy)); if (TLI.getShiftAmountFlavor() != TargetLowering::Mask) { ShAmt = DAG.getNode(ISD::AND, ShTy, ShAmt, // ShAmt &= 31 DAG.getConstant(NVTBits-1, ShTy)); NAmt = DAG.getNode(ISD::AND, ShTy, NAmt, // NAmt &= 31 DAG.getConstant(NVTBits-1, ShTy)); } if (Opc == ISD::SHL) { SDOperand T1 = DAG.getNode(ISD::OR, NVT,// T1 = (Hi << Amt) | (Lo >> NAmt) DAG.getNode(ISD::SHL, NVT, InH, ShAmt), DAG.getNode(ISD::SRL, NVT, InL, NAmt)); SDOperand T2 = DAG.getNode(ISD::SHL, NVT, InL, ShAmt); // T2 = Lo << Amt&31 Hi = DAG.getNode(ISD::SELECT, NVT, Cond, T2, T1); Lo = DAG.getNode(ISD::SELECT, NVT, Cond, DAG.getConstant(0, NVT), T2); } else { SDOperand HiLoPart = DAG.getNode(ISD::SELECT, NVT, DAG.getSetCC(ISD::SETEQ, TLI.getSetCCResultTy(), NAmt, DAG.getConstant(32, ShTy)), DAG.getConstant(0, NVT), DAG.getNode(ISD::SHL, NVT, InH, NAmt)); SDOperand T1 = DAG.getNode(ISD::OR, NVT,// T1 = (Hi << NAmt) | (Lo >> Amt) HiLoPart, DAG.getNode(ISD::SRL, NVT, InL, ShAmt)); SDOperand T2 = DAG.getNode(Opc, NVT, InH, ShAmt); // T2 = InH >> ShAmt&31 SDOperand HiPart; if (Opc == ISD::SRA) HiPart = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); else HiPart = DAG.getConstant(0, NVT); Lo = DAG.getNode(ISD::SELECT, NVT, Cond, T2, T1); Hi = DAG.getNode(ISD::SELECT, NVT, Cond, HiPart, T2); } return true; } /// FindLatestCallSeqStart - Scan up the dag to find the latest (highest /// NodeDepth) node that is an CallSeqStart operation and occurs later than /// Found. static void FindLatestCallSeqStart(SDNode *Node, SDNode *&Found) { if (Node->getNodeDepth() <= Found->getNodeDepth()) return; // If we found an CALLSEQ_START, we already know this node occurs later // than the Found node. Just remember this node and return. if (Node->getOpcode() == ISD::CALLSEQ_START) { Found = Node; return; } // Otherwise, scan the operands of Node to see if any of them is a call. assert(Node->getNumOperands() != 0 && "All leaves should have depth equal to the entry node!"); for (unsigned i = 0, e = Node->getNumOperands()-1; i != e; ++i) FindLatestCallSeqStart(Node->getOperand(i).Val, Found); // Tail recurse for the last iteration. FindLatestCallSeqStart(Node->getOperand(Node->getNumOperands()-1).Val, Found); } /// FindEarliestCallSeqEnd - Scan down the dag to find the earliest (lowest /// NodeDepth) node that is an CallSeqEnd operation and occurs more recent /// than Found. static void FindEarliestCallSeqEnd(SDNode *Node, SDNode *&Found) { if (Found && Node->getNodeDepth() >= Found->getNodeDepth()) return; // If we found an CALLSEQ_END, we already know this node occurs earlier // than the Found node. Just remember this node and return. if (Node->getOpcode() == ISD::CALLSEQ_END) { Found = Node; return; } // Otherwise, scan the operands of Node to see if any of them is a call. SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); if (UI == E) return; for (--E; UI != E; ++UI) FindEarliestCallSeqEnd(*UI, Found); // Tail recurse for the last iteration. FindEarliestCallSeqEnd(*UI, Found); } /// FindCallSeqEnd - Given a chained node that is part of a call sequence, /// find the CALLSEQ_END node that terminates the call sequence. static SDNode *FindCallSeqEnd(SDNode *Node) { if (Node->getOpcode() == ISD::CALLSEQ_END) return Node; if (Node->use_empty()) return 0; // No CallSeqEnd if (Node->hasOneUse()) // Simple case, only has one user to check. return FindCallSeqEnd(*Node->use_begin()); SDOperand TheChain(Node, Node->getNumValues()-1); if (TheChain.getValueType() != MVT::Other) TheChain = SDOperand(Node, 0); assert(TheChain.getValueType() == MVT::Other && "Is not a token chain!"); for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); ; ++UI) { assert(UI != E && "Didn't find a user of the tokchain, no CALLSEQ_END!"); // Make sure to only follow users of our token chain. SDNode *User = *UI; for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) if (User->getOperand(i) == TheChain) if (SDNode *Result = FindCallSeqEnd(User)) return Result; } assert(0 && "Unreachable"); abort(); } /// FindCallSeqStart - Given a chained node that is part of a call sequence, /// find the CALLSEQ_START node that initiates the call sequence. static SDNode *FindCallSeqStart(SDNode *Node) { assert(Node && "Didn't find callseq_start for a call??"); if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; assert(Node->getOperand(0).getValueType() == MVT::Other && "Node doesn't have a token chain argument!"); return FindCallSeqStart(Node->getOperand(0).Val); } /// FindInputOutputChains - If we are replacing an operation with a call we need /// to find the call that occurs before and the call that occurs after it to /// properly serialize the calls in the block. The returned operand is the /// input chain value for the new call (e.g. the entry node or the previous /// call), and OutChain is set to be the chain node to update to point to the /// end of the call chain. static SDOperand FindInputOutputChains(SDNode *OpNode, SDNode *&OutChain, SDOperand Entry) { SDNode *LatestCallSeqStart = Entry.Val; SDNode *LatestCallSeqEnd = 0; FindLatestCallSeqStart(OpNode, LatestCallSeqStart); //std::cerr<<"Found node: "; LatestCallSeqStart->dump(); std::cerr <<"\n"; // It is possible that no ISD::CALLSEQ_START was found because there is no // previous call in the function. LatestCallStackDown may in that case be // the entry node itself. Do not attempt to find a matching CALLSEQ_END // unless LatestCallStackDown is an CALLSEQ_START. if (LatestCallSeqStart->getOpcode() == ISD::CALLSEQ_START) LatestCallSeqEnd = FindCallSeqEnd(LatestCallSeqStart); else LatestCallSeqEnd = Entry.Val; assert(LatestCallSeqEnd && "NULL return from FindCallSeqEnd"); // Finally, find the first call that this must come before, first we find the // CallSeqEnd that ends the call. OutChain = 0; FindEarliestCallSeqEnd(OpNode, OutChain); // If we found one, translate from the adj up to the callseq_start. if (OutChain) OutChain = FindCallSeqStart(OutChain); return SDOperand(LatestCallSeqEnd, 0); } /// SpliceCallInto - Given the result chain of a libcall (CallResult), and a void SelectionDAGLegalize::SpliceCallInto(const SDOperand &CallResult, SDNode *OutChain) { // Nothing to splice it into? if (OutChain == 0) return; assert(OutChain->getOperand(0).getValueType() == MVT::Other); //OutChain->dump(); // Form a token factor node merging the old inval and the new inval. SDOperand InToken = DAG.getNode(ISD::TokenFactor, MVT::Other, CallResult, OutChain->getOperand(0)); // Change the node to refer to the new token. OutChain->setAdjCallChain(InToken); } // ExpandLibCall - Expand a node into a call to a libcall. If the result value // does not fit into a register, return the lo part and set the hi part to the // by-reg argument. If it does fit into a single register, return the result // and leave the Hi part unset. SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, SDOperand &Hi) { SDNode *OutChain; SDOperand InChain = FindInputOutputChains(Node, OutChain, DAG.getEntryNode()); if (InChain.Val == 0) InChain = DAG.getEntryNode(); TargetLowering::ArgListTy Args; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); const Type *ArgTy = MVT::getTypeForValueType(ArgVT); Args.push_back(std::make_pair(Node->getOperand(i), ArgTy)); } SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); // Splice the libcall in wherever FindInputOutputChains tells us to. const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); std::pair CallInfo = TLI.LowerCallTo(InChain, RetTy, false, CallingConv::C, false, Callee, Args, DAG); SpliceCallInto(CallInfo.second, OutChain); NeedsAnotherIteration = true; switch (getTypeAction(CallInfo.first.getValueType())) { default: assert(0 && "Unknown thing"); case Legal: return CallInfo.first; case Promote: assert(0 && "Cannot promote this yet!"); case Expand: SDOperand Lo; ExpandOp(CallInfo.first, Lo, Hi); return Lo; } } /// ExpandIntToFP - Expand a [US]INT_TO_FP operation, assuming that the /// destination type is legal. SDOperand SelectionDAGLegalize:: ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { assert(getTypeAction(DestTy) == Legal && "Destination type is not legal!"); assert(getTypeAction(Source.getValueType()) == Expand && "This is not an expansion!"); assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!"); if (!isSigned) { assert(Source.getValueType() == MVT::i64 && "This only works for 64-bit -> FP"); // The 64-bit value loaded will be incorrectly if the 'sign bit' of the // incoming integer is set. To handle this, we dynamically test to see if // it is set, and, if so, add a fudge factor. SDOperand Lo, Hi; ExpandOp(Source, Lo, Hi); // If this is unsigned, and not supported, first perform the conversion to // signed, then adjust the result if the sign bit is set. SDOperand SignedConv = ExpandIntToFP(true, DestTy, DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi)); SDOperand SignSet = DAG.getSetCC(ISD::SETLT, TLI.getSetCCResultTy(), Hi, DAG.getConstant(0, Hi.getValueType())); SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4); SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), SignSet, Four, Zero); uint64_t FF = 0x5f800000ULL; if (TLI.isLittleEndian()) FF <<= 32; static Constant *FudgeFactor = ConstantUInt::get(Type::ULongTy, FF); MachineConstantPool *CP = DAG.getMachineFunction().getConstantPool(); SDOperand CPIdx = DAG.getConstantPool(CP->getConstantPoolIndex(FudgeFactor), TLI.getPointerTy()); CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); SDOperand FudgeInReg; if (DestTy == MVT::f32) FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); else { assert(DestTy == MVT::f64 && "Unexpected conversion"); FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL), MVT::f32); } return DAG.getNode(ISD::ADD, DestTy, SignedConv, FudgeInReg); } // Check to see if the target has a custom way to lower this. If so, use it. switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) { default: assert(0 && "This action not implemented for this operation!"); case TargetLowering::Legal: case TargetLowering::Expand: break; // This case is handled below. case TargetLowering::Custom: Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); return LegalizeOp(TLI.LowerOperation(Source, DAG)); } // Expand the source, then glue it back together for the call. We must expand // the source in case it is shared (this pass of legalize must traverse it). SDOperand SrcLo, SrcHi; ExpandOp(Source, SrcLo, SrcHi); Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi); SDNode *OutChain = 0; SDOperand InChain = FindInputOutputChains(Source.Val, OutChain, DAG.getEntryNode()); const char *FnName = 0; if (DestTy == MVT::f32) FnName = "__floatdisf"; else { assert(DestTy == MVT::f64 && "Unknown fp value type!"); FnName = "__floatdidf"; } SDOperand Callee = DAG.getExternalSymbol(FnName, TLI.getPointerTy()); TargetLowering::ArgListTy Args; const Type *ArgTy = MVT::getTypeForValueType(Source.getValueType()); Args.push_back(std::make_pair(Source, ArgTy)); // We don't care about token chains for libcalls. We just use the entry // node as our input and ignore the output chain. This allows us to place // calls wherever we need them to satisfy data dependences. const Type *RetTy = MVT::getTypeForValueType(DestTy); std::pair CallResult = TLI.LowerCallTo(InChain, RetTy, false, CallingConv::C, true, Callee, Args, DAG); SpliceCallInto(CallResult.second, OutChain); return CallResult.first; } /// ExpandOp - Expand the specified SDOperand into its two component pieces /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the /// LegalizeNodes map is filled in for any results that are not expanded, the /// ExpandedNodes map is filled in for any results that are expanded, and the /// Lo/Hi values are returned. void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ MVT::ValueType VT = Op.getValueType(); MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); SDNode *Node = Op.Val; assert(getTypeAction(VT) == Expand && "Not an expanded type!"); assert(MVT::isInteger(VT) && "Cannot expand FP values!"); assert(MVT::isInteger(NVT) && NVT < VT && "Cannot expand to FP value or to larger int value!"); // If there is more than one use of this, see if we already expanded it. // There is no use remembering values that only have a single use, as the map // entries will never be reused. if (!Node->hasOneUse()) { std::map >::iterator I = ExpandedNodes.find(Op); if (I != ExpandedNodes.end()) { Lo = I->second.first; Hi = I->second.second; return; } } else { assert(!ExpandedNodes.count(Op) && "Re-expanding a node!"); } // Expanding to multiple registers needs to perform an optimization step, and // is not careful to avoid operations the target does not support. Make sure // that all generated operations are legalized in the next iteration. NeedsAnotherIteration = true; switch (Node->getOpcode()) { default: std::cerr << "NODE: "; Node->dump(); std::cerr << "\n"; assert(0 && "Do not know how to expand this operator!"); abort(); case ISD::UNDEF: Lo = DAG.getNode(ISD::UNDEF, NVT); Hi = DAG.getNode(ISD::UNDEF, NVT); break; case ISD::Constant: { uint64_t Cst = cast(Node)->getValue(); Lo = DAG.getConstant(Cst, NVT); Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT); break; } case ISD::CopyFromReg: { unsigned Reg = cast(Node)->getReg(); // Aggregate register values are always in consequtive pairs. Lo = DAG.getCopyFromReg(Reg, NVT, Node->getOperand(0)); Hi = DAG.getCopyFromReg(Reg+1, NVT, Lo.getValue(1)); // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); assert(isTypeLegal(NVT) && "Cannot expand this multiple times yet!"); break; } case ISD::BUILD_PAIR: // Legalize both operands. FIXME: in the future we should handle the case // where the two elements are not legal. assert(isTypeLegal(NVT) && "Cannot expand this multiple times yet!"); Lo = LegalizeOp(Node->getOperand(0)); Hi = LegalizeOp(Node->getOperand(1)); break; case ISD::CTPOP: ExpandOp(Node->getOperand(0), Lo, Hi); Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) DAG.getNode(ISD::CTPOP, NVT, Lo), DAG.getNode(ISD::CTPOP, NVT, Hi)); Hi = DAG.getConstant(0, NVT); break; case ISD::CTLZ: { // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) ExpandOp(Node->getOperand(0), Lo, Hi); SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); SDOperand TopNotZero = DAG.getSetCC(ISD::SETNE, TLI.getSetCCResultTy(), HLZ, BitsC); SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); Hi = DAG.getConstant(0, NVT); break; } case ISD::CTTZ: { // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) ExpandOp(Node->getOperand(0), Lo, Hi); SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); SDOperand BotNotZero = DAG.getSetCC(ISD::SETNE, TLI.getSetCCResultTy(), LTZ, BitsC); SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); Hi = DAG.getConstant(0, NVT); break; } case ISD::LOAD: { SDOperand Ch = LegalizeOp(Node->getOperand(0)); // Legalize the chain. SDOperand Ptr = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. Lo = DAG.getLoad(NVT, Ch, Ptr, Node->getOperand(2)); // Increment the pointer to the other half. unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, getIntPtrConstant(IncrementSize)); //Is this safe? declaring that the two parts of the split load //are from the same instruction? Hi = DAG.getLoad(NVT, Ch, Ptr, Node->getOperand(2)); // Build a factor node to remember that this load is independent of the // other one. SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), TF); if (!TLI.isLittleEndian()) std::swap(Lo, Hi); break; } case ISD::TAILCALL: case ISD::CALL: { SDOperand Chain = LegalizeOp(Node->getOperand(0)); // Legalize the chain. SDOperand Callee = LegalizeOp(Node->getOperand(1)); // Legalize the callee. bool Changed = false; std::vector Ops; for (unsigned i = 2, e = Node->getNumOperands(); i != e; ++i) { Ops.push_back(LegalizeOp(Node->getOperand(i))); Changed |= Ops.back() != Node->getOperand(i); } assert(Node->getNumValues() == 2 && Op.ResNo == 0 && "Can only expand a call once so far, not i64 -> i16!"); std::vector RetTyVTs; RetTyVTs.reserve(3); RetTyVTs.push_back(NVT); RetTyVTs.push_back(NVT); RetTyVTs.push_back(MVT::Other); SDNode *NC = DAG.getCall(RetTyVTs, Chain, Callee, Ops, Node->getOpcode() == ISD::TAILCALL); Lo = SDOperand(NC, 0); Hi = SDOperand(NC, 1); // Insert the new chain mapping. AddLegalizedOperand(Op.getValue(1), Hi.getValue(2)); break; } case ISD::AND: case ISD::OR: case ISD::XOR: { // Simple logical operators -> two trivial pieces. SDOperand LL, LH, RL, RH; ExpandOp(Node->getOperand(0), LL, LH); ExpandOp(Node->getOperand(1), RL, RH); Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); break; } case ISD::SELECT: { SDOperand C, LL, LH, RL, RH; switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "It's impossible to expand bools"); case Legal: C = LegalizeOp(Node->getOperand(0)); // Legalize the condition. break; case Promote: C = PromoteOp(Node->getOperand(0)); // Promote the condition. break; } ExpandOp(Node->getOperand(1), LL, LH); ExpandOp(Node->getOperand(2), RL, RH); Lo = DAG.getNode(ISD::SELECT, NVT, C, LL, RL); Hi = DAG.getNode(ISD::SELECT, NVT, C, LH, RH); break; } case ISD::SIGN_EXTEND: { SDOperand In; switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "expand-expand not implemented yet!"); case Legal: In = LegalizeOp(Node->getOperand(0)); break; case Promote: In = PromoteOp(Node->getOperand(0)); // Emit the appropriate sign_extend_inreg to get the value we want. In = DAG.getNode(ISD::SIGN_EXTEND_INREG, In.getValueType(), In, DAG.getValueType(Node->getOperand(0).getValueType())); break; } // The low part is just a sign extension of the input (which degenerates to // a copy). Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, In); // The high part is obtained by SRA'ing all but one of the bits of the lo // part. unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); Hi = DAG.getNode(ISD::SRA, NVT, Lo, DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); break; } case ISD::ZERO_EXTEND: { SDOperand In; switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "expand-expand not implemented yet!"); case Legal: In = LegalizeOp(Node->getOperand(0)); break; case Promote: In = PromoteOp(Node->getOperand(0)); // Emit the appropriate zero_extend_inreg to get the value we want. In = DAG.getZeroExtendInReg(In, Node->getOperand(0).getValueType()); break; } // The low part is just a zero extension of the input (which degenerates to // a copy). Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, In); // The high part is just a zero. Hi = DAG.getConstant(0, NVT); break; } // These operators cannot be expanded directly, emit them as calls to // library functions. case ISD::FP_TO_SINT: if (Node->getOperand(0).getValueType() == MVT::f32) Lo = ExpandLibCall("__fixsfdi", Node, Hi); else Lo = ExpandLibCall("__fixdfdi", Node, Hi); break; case ISD::FP_TO_UINT: if (Node->getOperand(0).getValueType() == MVT::f32) Lo = ExpandLibCall("__fixunssfdi", Node, Hi); else Lo = ExpandLibCall("__fixunsdfdi", Node, Hi); break; case ISD::SHL: // If we can emit an efficient shift operation, do so now. if (ExpandShift(ISD::SHL, Node->getOperand(0), Node->getOperand(1), Lo, Hi)) break; // If this target supports SHL_PARTS, use it. if (TLI.getOperationAction(ISD::SHL_PARTS, NVT) == TargetLowering::Legal) { ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), Node->getOperand(1), Lo, Hi); break; } // Otherwise, emit a libcall. Lo = ExpandLibCall("__ashldi3", Node, Hi); break; case ISD::SRA: // If we can emit an efficient shift operation, do so now. if (ExpandShift(ISD::SRA, Node->getOperand(0), Node->getOperand(1), Lo, Hi)) break; // If this target supports SRA_PARTS, use it. if (TLI.getOperationAction(ISD::SRA_PARTS, NVT) == TargetLowering::Legal) { ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), Node->getOperand(1), Lo, Hi); break; } // Otherwise, emit a libcall. Lo = ExpandLibCall("__ashrdi3", Node, Hi); break; case ISD::SRL: // If we can emit an efficient shift operation, do so now. if (ExpandShift(ISD::SRL, Node->getOperand(0), Node->getOperand(1), Lo, Hi)) break; // If this target supports SRL_PARTS, use it. if (TLI.getOperationAction(ISD::SRL_PARTS, NVT) == TargetLowering::Legal) { ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), Node->getOperand(1), Lo, Hi); break; } // Otherwise, emit a libcall. Lo = ExpandLibCall("__lshrdi3", Node, Hi); break; case ISD::ADD: ExpandByParts(ISD::ADD_PARTS, Node->getOperand(0), Node->getOperand(1), Lo, Hi); break; case ISD::SUB: ExpandByParts(ISD::SUB_PARTS, Node->getOperand(0), Node->getOperand(1), Lo, Hi); break; case ISD::MUL: { if (TLI.getOperationAction(ISD::MULHU, NVT) == TargetLowering::Legal) { SDOperand LL, LH, RL, RH; ExpandOp(Node->getOperand(0), LL, LH); ExpandOp(Node->getOperand(1), RL, RH); Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); RH = DAG.getNode(ISD::MUL, NVT, LL, RH); LH = DAG.getNode(ISD::MUL, NVT, LH, RL); Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); } else { Lo = ExpandLibCall("__muldi3" , Node, Hi); break; } break; } case ISD::SDIV: Lo = ExpandLibCall("__divdi3" , Node, Hi); break; case ISD::UDIV: Lo = ExpandLibCall("__udivdi3", Node, Hi); break; case ISD::SREM: Lo = ExpandLibCall("__moddi3" , Node, Hi); break; case ISD::UREM: Lo = ExpandLibCall("__umoddi3", Node, Hi); break; } // Remember in a map if the values will be reused later. if (!Node->hasOneUse()) { bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; assert(isNew && "Value already expanded?!?"); } } // SelectionDAG::Legalize - This is the entry point for the file. // void SelectionDAG::Legalize() { /// run - This is the main entry point to this class. /// SelectionDAGLegalize(*this).Run(); }