//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting a description of the target // instruction set for the code generator. // //===----------------------------------------------------------------------===// #include "InstrSelectorEmitter.h" #include "Record.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/StringExtras.h" #include using namespace llvm; NodeType::ArgResultTypes NodeType::Translate(Record *R) { const std::string &Name = R->getName(); if (Name == "DNVT_any") return Any; if (Name == "DNVT_void") return Void; if (Name == "DNVT_val" ) return Val; if (Name == "DNVT_arg0") return Arg0; if (Name == "DNVT_arg1") return Arg1; if (Name == "DNVT_ptr" ) return Ptr; if (Name == "DNVT_i8" ) return I8; throw "Unknown DagNodeValType '" + Name + "'!"; } //===----------------------------------------------------------------------===// // TreePatternNode implementation // /// getValueRecord - Returns the value of this tree node as a record. For now /// we only allow DefInit's as our leaf values, so this is used. Record *TreePatternNode::getValueRecord() const { DefInit *DI = dynamic_cast(getValue()); assert(DI && "Instruction Selector does not yet support non-def leaves!"); return DI->getDef(); } // updateNodeType - Set the node type of N to VT if VT contains information. If // N already contains a conflicting type, then throw an exception // bool TreePatternNode::updateNodeType(MVT::ValueType VT, const std::string &RecName) { if (VT == MVT::Other || getType() == VT) return false; if (getType() == MVT::Other) { setType(VT); return true; } throw "Type inference contradiction found for pattern " + RecName; } /// InstantiateNonterminals - If this pattern refers to any nonterminals which /// are not themselves completely resolved, clone the nonterminal and resolve it /// with the using context we provide. /// void TreePatternNode::InstantiateNonterminals(InstrSelectorEmitter &ISE) { if (!isLeaf()) { for (unsigned i = 0, e = getNumChildren(); i != e; ++i) getChild(i)->InstantiateNonterminals(ISE); return; } // If this is a leaf, it might be a reference to a nonterminal! Check now. Record *R = getValueRecord(); if (R->isSubClassOf("Nonterminal")) { Pattern *NT = ISE.getPattern(R); if (!NT->isResolved()) { // We found an unresolved nonterminal reference. Ask the ISE to clone // it for us, then update our reference to the fresh, new, resolved, // nonterminal. Value = new DefInit(ISE.InstantiateNonterminal(NT, getType())); } } } /// clone - Make a copy of this tree and all of its children. /// TreePatternNode *TreePatternNode::clone() const { TreePatternNode *New; if (isLeaf()) { New = new TreePatternNode(Value); } else { std::vector > CChildren; CChildren.reserve(Children.size()); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) CChildren.push_back(std::make_pair(getChild(i)->clone(),getChildName(i))); New = new TreePatternNode(Operator, CChildren); } New->setType(Type); return New; } std::ostream &llvm::operator<<(std::ostream &OS, const TreePatternNode &N) { if (N.isLeaf()) return OS << N.getType() << ":" << *N.getValue(); OS << "(" << N.getType() << ":"; OS << N.getOperator()->getName(); if (N.getNumChildren() != 0) { OS << " " << *N.getChild(0); for (unsigned i = 1, e = N.getNumChildren(); i != e; ++i) OS << ", " << *N.getChild(i); } return OS << ")"; } void TreePatternNode::dump() const { std::cerr << *this; } //===----------------------------------------------------------------------===// // Pattern implementation // // Parse the specified DagInit into a TreePattern which we can use. // Pattern::Pattern(PatternType pty, DagInit *RawPat, Record *TheRec, InstrSelectorEmitter &ise) : PTy(pty), ResultNode(0), TheRecord(TheRec), ISE(ise) { // First, parse the pattern... Tree = ParseTreePattern(RawPat); // Run the type-inference engine... InferAllTypes(); if (PTy == Instruction || PTy == Expander) { // Check to make sure there is not any unset types in the tree pattern... if (!isResolved()) { std::cerr << "In pattern: " << *Tree << "\n"; error("Could not infer all types!"); } // Check to see if we have a top-level (set) of a register. if (Tree->getOperator()->getName() == "set") { assert(Tree->getNumChildren() == 2 && "Set with != 2 arguments?"); if (!Tree->getChild(0)->isLeaf()) error("Arg #0 of set should be a register or register class!"); ResultNode = Tree->getChild(0); ResultName = Tree->getChildName(0); Tree = Tree->getChild(1); } } calculateArgs(Tree, ""); } void Pattern::error(const std::string &Msg) const { std::string M = "In "; switch (PTy) { case Nonterminal: M += "nonterminal "; break; case Instruction: M += "instruction "; break; case Expander : M += "expander "; break; } throw M + TheRecord->getName() + ": " + Msg; } /// calculateArgs - Compute the list of all of the arguments to this pattern, /// which are the non-void leaf nodes in this pattern. /// void Pattern::calculateArgs(TreePatternNode *N, const std::string &Name) { if (N->isLeaf() || N->getNumChildren() == 0) { if (N->getType() != MVT::isVoid) Args.push_back(std::make_pair(N, Name)); } else { for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) calculateArgs(N->getChild(i), N->getChildName(i)); } } /// getIntrinsicType - Check to see if the specified record has an intrinsic /// type which should be applied to it. This infer the type of register /// references from the register file information, for example. /// MVT::ValueType Pattern::getIntrinsicType(Record *R) const { // Check to see if this is a register or a register class... if (R->isSubClassOf("RegisterClass")) return getValueType(R->getValueAsDef("RegType")); else if (R->isSubClassOf("Nonterminal")) return ISE.ReadNonterminal(R)->getTree()->getType(); else if (R->isSubClassOf("Register")) { std::cerr << "WARNING: Explicit registers not handled yet!\n"; return MVT::Other; } error("Unknown value used: " + R->getName()); return MVT::Other; } TreePatternNode *Pattern::ParseTreePattern(DagInit *Dag) { Record *Operator = Dag->getNodeType(); if (Operator->isSubClassOf("ValueType")) { // If the operator is a ValueType, then this must be "type cast" of a leaf // node. if (Dag->getNumArgs() != 1) error("Type cast only valid for a leaf node!"); Init *Arg = Dag->getArg(0); TreePatternNode *New; if (DefInit *DI = dynamic_cast(Arg)) { New = new TreePatternNode(DI); // If it's a regclass or something else known, set the type. New->setType(getIntrinsicType(DI->getDef())); } else if (DagInit *DI = dynamic_cast(Arg)) { New = ParseTreePattern(DI); } else { Arg->dump(); error("Unknown leaf value for tree pattern!"); return 0; } // Apply the type cast... New->updateNodeType(getValueType(Operator), TheRecord->getName()); return New; } if (!ISE.getNodeTypes().count(Operator)) error("Unrecognized node '" + Operator->getName() + "'!"); std::vector > Children; for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { Init *Arg = Dag->getArg(i); if (DagInit *DI = dynamic_cast(Arg)) { Children.push_back(std::make_pair(ParseTreePattern(DI), Dag->getArgName(i))); } else if (DefInit *DefI = dynamic_cast(Arg)) { Record *R = DefI->getDef(); // Direct reference to a leaf DagNode? Turn it into a DagNode if its own. if (R->isSubClassOf("DagNode")) { Dag->setArg(i, new DagInit(R, std::vector >())); --i; // Revisit this node... } else { Children.push_back(std::make_pair(new TreePatternNode(DefI), Dag->getArgName(i))); // If it's a regclass or something else known, set the type. Children.back().first->setType(getIntrinsicType(R)); } } else { Arg->dump(); error("Unknown leaf value for tree pattern!"); } } return new TreePatternNode(Operator, Children); } void Pattern::InferAllTypes() { bool MadeChange, AnyUnset; do { MadeChange = false; AnyUnset = InferTypes(Tree, MadeChange); } while ((AnyUnset || MadeChange) && !(AnyUnset && !MadeChange)); Resolved = !AnyUnset; } // InferTypes - Perform type inference on the tree, returning true if there // are any remaining untyped nodes and setting MadeChange if any changes were // made. bool Pattern::InferTypes(TreePatternNode *N, bool &MadeChange) { if (N->isLeaf()) return N->getType() == MVT::Other; bool AnyUnset = false; Record *Operator = N->getOperator(); const NodeType &NT = ISE.getNodeType(Operator); // Check to see if we can infer anything about the argument types from the // return types... if (N->getNumChildren() != NT.ArgTypes.size()) error("Incorrect number of children for " + Operator->getName() + " node!"); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); AnyUnset |= InferTypes(Child, MadeChange); switch (NT.ArgTypes[i]) { case NodeType::Any: break; case NodeType::I8: MadeChange |= Child->updateNodeType(MVT::i1, TheRecord->getName()); break; case NodeType::Arg0: MadeChange |= Child->updateNodeType(N->getChild(0)->getType(), TheRecord->getName()); break; case NodeType::Arg1: MadeChange |= Child->updateNodeType(N->getChild(1)->getType(), TheRecord->getName()); break; case NodeType::Val: if (Child->getType() == MVT::isVoid) error("Inferred a void node in an illegal place!"); break; case NodeType::Ptr: MadeChange |= Child->updateNodeType(ISE.getTarget().getPointerType(), TheRecord->getName()); break; case NodeType::Void: MadeChange |= Child->updateNodeType(MVT::isVoid, TheRecord->getName()); break; default: assert(0 && "Invalid argument ArgType!"); } } // See if we can infer anything about the return type now... switch (NT.ResultType) { case NodeType::Any: break; case NodeType::Void: MadeChange |= N->updateNodeType(MVT::isVoid, TheRecord->getName()); break; case NodeType::I8: MadeChange |= N->updateNodeType(MVT::i1, TheRecord->getName()); break; case NodeType::Arg0: MadeChange |= N->updateNodeType(N->getChild(0)->getType(), TheRecord->getName()); break; case NodeType::Arg1: MadeChange |= N->updateNodeType(N->getChild(1)->getType(), TheRecord->getName()); break; case NodeType::Ptr: MadeChange |= N->updateNodeType(ISE.getTarget().getPointerType(), TheRecord->getName()); break; case NodeType::Val: if (N->getType() == MVT::isVoid) error("Inferred a void node in an illegal place!"); break; default: assert(0 && "Unhandled type constraint!"); break; } return AnyUnset | N->getType() == MVT::Other; } /// clone - This method is used to make an exact copy of the current pattern, /// then change the "TheRecord" instance variable to the specified record. /// Pattern *Pattern::clone(Record *R) const { assert(PTy == Nonterminal && "Can only clone nonterminals"); return new Pattern(Tree->clone(), R, Resolved, ISE); } std::ostream &llvm::operator<<(std::ostream &OS, const Pattern &P) { switch (P.getPatternType()) { case Pattern::Nonterminal: OS << "Nonterminal pattern "; break; case Pattern::Instruction: OS << "Instruction pattern "; break; case Pattern::Expander: OS << "Expander pattern "; break; } OS << P.getRecord()->getName() << ":\t"; if (Record *Result = P.getResult()) OS << Result->getName() << " = "; OS << *P.getTree(); if (!P.isResolved()) OS << " [not completely resolved]"; return OS; } void Pattern::dump() const { std::cerr << *this; } /// getSlotName - If this is a leaf node, return the slot name that the operand /// will update. std::string Pattern::getSlotName() const { if (getPatternType() == Pattern::Nonterminal) { // Just use the nonterminal name, which will already include the type if // it has been cloned. return getRecord()->getName(); } else { std::string SlotName; if (getResult()) SlotName = getResult()->getName()+"_"; else SlotName = "Void_"; return SlotName + getName(getTree()->getType()); } } /// getSlotName - If this is a leaf node, return the slot name that the /// operand will update. std::string Pattern::getSlotName(Record *R) { if (R->isSubClassOf("Nonterminal")) { // Just use the nonterminal name, which will already include the type if // it has been cloned. return R->getName(); } else if (R->isSubClassOf("RegisterClass")) { MVT::ValueType Ty = getValueType(R->getValueAsDef("RegType")); return R->getName() + "_" + getName(Ty); } else { assert(0 && "Don't know how to get a slot name for this!"); } return ""; } //===----------------------------------------------------------------------===// // PatternOrganizer implementation // /// addPattern - Add the specified pattern to the appropriate location in the /// collection. void PatternOrganizer::addPattern(Pattern *P) { NodesForSlot &Nodes = AllPatterns[P->getSlotName()]; if (!P->getTree()->isLeaf()) Nodes[P->getTree()->getOperator()].push_back(P); else { // Right now we only support DefInit's with node types... Nodes[P->getTree()->getValueRecord()].push_back(P); } } //===----------------------------------------------------------------------===// // InstrSelectorEmitter implementation // /// ReadNodeTypes - Read in all of the node types in the current RecordKeeper, /// turning them into the more accessible NodeTypes data structure. /// void InstrSelectorEmitter::ReadNodeTypes() { std::vector Nodes = Records.getAllDerivedDefinitions("DagNode"); DEBUG(std::cerr << "Getting node types: "); for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { Record *Node = Nodes[i]; // Translate the return type... NodeType::ArgResultTypes RetTy = NodeType::Translate(Node->getValueAsDef("RetType")); // Translate the arguments... ListInit *Args = Node->getValueAsListInit("ArgTypes"); std::vector ArgTypes; for (unsigned a = 0, e = Args->getSize(); a != e; ++a) { if (DefInit *DI = dynamic_cast(Args->getElement(a))) ArgTypes.push_back(NodeType::Translate(DI->getDef())); else throw "In node " + Node->getName() + ", argument is not a Def!"; if (a == 0 && ArgTypes.back() == NodeType::Arg0) throw "In node " + Node->getName() + ", arg 0 cannot have type 'arg0'!"; if (a == 1 && ArgTypes.back() == NodeType::Arg1) throw "In node " + Node->getName() + ", arg 1 cannot have type 'arg1'!"; } if ((RetTy == NodeType::Arg0 && Args->getSize() == 0) || (RetTy == NodeType::Arg1 && Args->getSize() < 2)) throw "In node " + Node->getName() + ", invalid return type for node with this many operands!"; // Add the node type mapping now... NodeTypes[Node] = NodeType(RetTy, ArgTypes); DEBUG(std::cerr << Node->getName() << ", "); } DEBUG(std::cerr << "DONE!\n"); } Pattern *InstrSelectorEmitter::ReadNonterminal(Record *R) { Pattern *&P = Patterns[R]; if (P) return P; // Don't reread it! DagInit *DI = R->getValueAsDag("Pattern"); P = new Pattern(Pattern::Nonterminal, DI, R, *this); DEBUG(std::cerr << "Parsed " << *P << "\n"); return P; } // ReadNonTerminals - Read in all nonterminals and incorporate them into our // pattern database. void InstrSelectorEmitter::ReadNonterminals() { std::vector NTs = Records.getAllDerivedDefinitions("Nonterminal"); for (unsigned i = 0, e = NTs.size(); i != e; ++i) ReadNonterminal(NTs[i]); } /// ReadInstructionPatterns - Read in all subclasses of Instruction, and process /// those with a useful Pattern field. /// void InstrSelectorEmitter::ReadInstructionPatterns() { std::vector Insts = Records.getAllDerivedDefinitions("Instruction"); for (unsigned i = 0, e = Insts.size(); i != e; ++i) { Record *Inst = Insts[i]; if (DagInit *DI = dynamic_cast(Inst->getValueInit("Pattern"))) { Patterns[Inst] = new Pattern(Pattern::Instruction, DI, Inst, *this); DEBUG(std::cerr << "Parsed " << *Patterns[Inst] << "\n"); } } } /// ReadExpanderPatterns - Read in all expander patterns... /// void InstrSelectorEmitter::ReadExpanderPatterns() { std::vector Expanders = Records.getAllDerivedDefinitions("Expander"); for (unsigned i = 0, e = Expanders.size(); i != e; ++i) { Record *Expander = Expanders[i]; DagInit *DI = Expander->getValueAsDag("Pattern"); Patterns[Expander] = new Pattern(Pattern::Expander, DI, Expander, *this); DEBUG(std::cerr << "Parsed " << *Patterns[Expander] << "\n"); } } // InstantiateNonterminals - Instantiate any unresolved nonterminals with // information from the context that they are used in. // void InstrSelectorEmitter::InstantiateNonterminals() { DEBUG(std::cerr << "Instantiating nonterminals:\n"); for (std::map::iterator I = Patterns.begin(), E = Patterns.end(); I != E; ++I) if (I->second->isResolved()) I->second->InstantiateNonterminals(); } /// InstantiateNonterminal - This method takes the nonterminal specified by /// NT, which should not be completely resolved, clones it, applies ResultTy /// to its root, then runs the type inference stuff on it. This should /// produce a newly resolved nonterminal, which we make a record for and /// return. To be extra fancy and efficient, this only makes one clone for /// each type it is instantiated with. Record *InstrSelectorEmitter::InstantiateNonterminal(Pattern *NT, MVT::ValueType ResultTy) { assert(!NT->isResolved() && "Nonterminal is already resolved!"); // Check to see if we have already instantiated this pair... Record* &Slot = InstantiatedNTs[std::make_pair(NT, ResultTy)]; if (Slot) return Slot; Record *New = new Record(NT->getRecord()->getName()+"_"+getName(ResultTy)); // Copy over the superclasses... const std::vector &SCs = NT->getRecord()->getSuperClasses(); for (unsigned i = 0, e = SCs.size(); i != e; ++i) New->addSuperClass(SCs[i]); DEBUG(std::cerr << " Nonterminal '" << NT->getRecord()->getName() << "' for type '" << getName(ResultTy) << "', producing '" << New->getName() << "'\n"); // Copy the pattern... Pattern *NewPat = NT->clone(New); // Apply the type to the root... NewPat->getTree()->updateNodeType(ResultTy, New->getName()); // Infer types... NewPat->InferAllTypes(); // Make sure everything is good to go now... if (!NewPat->isResolved()) NewPat->error("Instantiating nonterminal did not resolve all types!"); // Add the pattern to the patterns map, add the record to the RecordKeeper, // return the new record. Patterns[New] = NewPat; Records.addDef(New); return Slot = New; } // CalculateComputableValues - Fill in the ComputableValues map through // analysis of the patterns we are playing with. void InstrSelectorEmitter::CalculateComputableValues() { // Loop over all of the patterns, adding them to the ComputableValues map for (std::map::iterator I = Patterns.begin(), E = Patterns.end(); I != E; ++I) if (I->second->isResolved()) { // We don't want to add patterns like R32 = R32. This is a hack working // around a special case of a general problem, but for now we explicitly // forbid these patterns. They can never match anyway. Pattern *P = I->second; if (!P->getResult() || !P->getTree()->isLeaf() || P->getResult() != P->getTree()->getValueRecord()) ComputableValues.addPattern(P); } } #if 0 // MoveIdenticalPatterns - Given a tree pattern 'P', move all of the tree // patterns which have the same top-level structure as P from the 'From' list to // the 'To' list. static void MoveIdenticalPatterns(TreePatternNode *P, std::vector > &From, std::vector > &To) { assert(!P->isLeaf() && "All leaves are identical!"); const std::vector &PChildren = P->getChildren(); for (unsigned i = 0; i != From.size(); ++i) { TreePatternNode *N = From[i].second; assert(P->getOperator() == N->getOperator() &&"Differing operators?"); assert(PChildren.size() == N->getChildren().size() && "Nodes with different arity??"); bool isDifferent = false; for (unsigned c = 0, e = PChildren.size(); c != e; ++c) { TreePatternNode *PC = PChildren[c]; TreePatternNode *NC = N->getChild(c); if (PC->isLeaf() != NC->isLeaf()) { isDifferent = true; break; } if (!PC->isLeaf()) { if (PC->getOperator() != NC->getOperator()) { isDifferent = true; break; } } else { // It's a leaf! if (PC->getValueRecord() != NC->getValueRecord()) { isDifferent = true; break; } } } // If it's the same as the reference one, move it over now... if (!isDifferent) { To.push_back(std::make_pair(From[i].first, N)); From.erase(From.begin()+i); --i; // Don't skip an entry... } } } #endif static std::string getNodeName(Record *R) { RecordVal *RV = R->getValue("EnumName"); if (RV) if (Init *I = RV->getValue()) if (StringInit *SI = dynamic_cast(I)) return SI->getValue(); return R->getName(); } static void EmitPatternPredicates(TreePatternNode *Tree, const std::string &VarName, std::ostream &OS){ OS << " && " << VarName << "->getNodeType() == ISD::" << getNodeName(Tree->getOperator()); for (unsigned c = 0, e = Tree->getNumChildren(); c != e; ++c) if (!Tree->getChild(c)->isLeaf()) EmitPatternPredicates(Tree->getChild(c), VarName + "->getUse(" + utostr(c)+")", OS); } static void EmitPatternCosts(TreePatternNode *Tree, const std::string &VarName, std::ostream &OS) { for (unsigned c = 0, e = Tree->getNumChildren(); c != e; ++c) if (Tree->getChild(c)->isLeaf()) { OS << " + Match_" << Pattern::getSlotName(Tree->getChild(c)->getValueRecord()) << "(" << VarName << "->getUse(" << c << "))"; } else { EmitPatternCosts(Tree->getChild(c), VarName + "->getUse(" + utostr(c) + ")", OS); } } // EmitMatchCosters - Given a list of patterns, which all have the same root // pattern operator, emit an efficient decision tree to decide which one to // pick. This is structured this way to avoid reevaluations of non-obvious // subexpressions. void InstrSelectorEmitter::EmitMatchCosters(std::ostream &OS, const std::vector > &Patterns, const std::string &VarPrefix, unsigned IndentAmt) { assert(!Patterns.empty() && "No patterns to emit matchers for!"); std::string Indent(IndentAmt, ' '); // Load all of the operands of the root node into scalars for fast access const NodeType &ONT = getNodeType(Patterns[0].second->getOperator()); for (unsigned i = 0, e = ONT.ArgTypes.size(); i != e; ++i) OS << Indent << "SelectionDAGNode *" << VarPrefix << "_Op" << i << " = N->getUse(" << i << ");\n"; // Compute the costs of computing the various nonterminals/registers, which // are directly used at this level. OS << "\n" << Indent << "// Operand matching costs...\n"; std::set ComputedValues; // Avoid duplicate computations... for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { TreePatternNode *NParent = Patterns[i].second; for (unsigned c = 0, e = NParent->getNumChildren(); c != e; ++c) { TreePatternNode *N = NParent->getChild(c); if (N->isLeaf()) { Record *VR = N->getValueRecord(); const std::string &LeafName = VR->getName(); std::string OpName = VarPrefix + "_Op" + utostr(c); std::string ValName = OpName + "_" + LeafName + "_Cost"; if (!ComputedValues.count(ValName)) { OS << Indent << "unsigned " << ValName << " = Match_" << Pattern::getSlotName(VR) << "(" << OpName << ");\n"; ComputedValues.insert(ValName); } } } } OS << "\n"; std::string LocCostName = VarPrefix + "_Cost"; OS << Indent << "unsigned " << LocCostName << "Min = ~0U >> 1;\n" << Indent << "unsigned " << VarPrefix << "_PatternMin = NoMatchPattern;\n"; #if 0 // Separate out all of the patterns into groups based on what their top-level // signature looks like... std::vector > PatternsLeft(Patterns); while (!PatternsLeft.empty()) { // Process all of the patterns that have the same signature as the last // element... std::vector > Group; MoveIdenticalPatterns(PatternsLeft.back().second, PatternsLeft, Group); assert(!Group.empty() && "Didn't at least pick the source pattern?"); #if 0 OS << "PROCESSING GROUP:\n"; for (unsigned i = 0, e = Group.size(); i != e; ++i) OS << " " << *Group[i].first << "\n"; OS << "\n\n"; #endif OS << Indent << "{ // "; if (Group.size() != 1) { OS << Group.size() << " size group...\n"; OS << Indent << " unsigned " << VarPrefix << "_Pattern = NoMatch;\n"; } else { OS << *Group[0].first << "\n"; OS << Indent << " unsigned " << VarPrefix << "_Pattern = " << Group[0].first->getRecord()->getName() << "_Pattern;\n"; } OS << Indent << " unsigned " << LocCostName << " = "; if (Group.size() == 1) OS << "1;\n"; // Add inst cost if at individual rec else OS << "0;\n"; // Loop over all of the operands, adding in their costs... TreePatternNode *N = Group[0].second; const std::vector &Children = N->getChildren(); // If necessary, emit conditionals to check for the appropriate tree // structure here... for (unsigned i = 0, e = Children.size(); i != e; ++i) { TreePatternNode *C = Children[i]; if (C->isLeaf()) { // We already calculated the cost for this leaf, add it in now... OS << Indent << " " << LocCostName << " += " << VarPrefix << "_Op" << utostr(i) << "_" << C->getValueRecord()->getName() << "_Cost;\n"; } else { // If it's not a leaf, we have to check to make sure that the current // node has the appropriate structure, then recurse into it... OS << Indent << " if (" << VarPrefix << "_Op" << i << "->getNodeType() == ISD::" << getNodeName(C->getOperator()) << ") {\n"; std::vector > SubPatterns; for (unsigned n = 0, e = Group.size(); n != e; ++n) SubPatterns.push_back(std::make_pair(Group[n].first, Group[n].second->getChild(i))); EmitMatchCosters(OS, SubPatterns, VarPrefix+"_Op"+utostr(i), IndentAmt + 4); OS << Indent << " }\n"; } } // If the cost for this match is less than the minimum computed cost so far, // update the minimum cost and selected pattern. OS << Indent << " if (" << LocCostName << " < " << LocCostName << "Min) { " << LocCostName << "Min = " << LocCostName << "; " << VarPrefix << "_PatternMin = " << VarPrefix << "_Pattern; }\n"; OS << Indent << "}\n"; } #endif for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { Pattern *P = Patterns[i].first; TreePatternNode *PTree = P->getTree(); unsigned PatternCost = 1; // Check to see if there are any non-leaf elements in the pattern. If so, // we need to emit a predicate for this match. bool AnyNonLeaf = false; for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c) if (!PTree->getChild(c)->isLeaf()) { AnyNonLeaf = true; break; } if (!AnyNonLeaf) { // No predicate necessary, just output a scope... OS << " {// " << *P << "\n"; } else { // We need to emit a predicate to make sure the tree pattern matches, do // so now... OS << " if (1"; for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c) if (!PTree->getChild(c)->isLeaf()) EmitPatternPredicates(PTree->getChild(c), VarPrefix + "_Op" + utostr(c), OS); OS << ") {\n // " << *P << "\n"; } OS << " unsigned PatCost = " << PatternCost; for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c) if (PTree->getChild(c)->isLeaf()) { OS << " + " << VarPrefix << "_Op" << c << "_" << PTree->getChild(c)->getValueRecord()->getName() << "_Cost"; } else { EmitPatternCosts(PTree->getChild(c), VarPrefix + "_Op" + utostr(c), OS); } OS << ";\n"; OS << " if (PatCost < MinCost) { MinCost = PatCost; Pattern = " << P->getRecord()->getName() << "_Pattern; }\n" << " }\n"; } } static void ReduceAllOperands(TreePatternNode *N, const std::string &Name, std::vector > &Operands, std::ostream &OS) { if (N->isLeaf()) { // If this is a leaf, register or nonterminal reference... std::string SlotName = Pattern::getSlotName(N->getValueRecord()); OS << " ReducedValue_" << SlotName << " *" << Name << "Val = Reduce_" << SlotName << "(" << Name << ", MBB);\n"; Operands.push_back(std::make_pair(N, Name+"Val")); } else if (N->getNumChildren() == 0) { // This is a reference to a leaf tree node, like an immediate or frame // index. if (N->getType() != MVT::isVoid) { std::string SlotName = getNodeName(N->getOperator()) + "_" + getName(N->getType()); OS << " ReducedValue_" << SlotName << " *" << Name << "Val = " << Name << "->getValue(ISD::" << SlotName << "_Slot);\n"; Operands.push_back(std::make_pair(N, Name+"Val")); } } else { // Otherwise this is an interior node... for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { std::string ChildName = Name + "_Op" + utostr(i); OS << " SelectionDAGNode *" << ChildName << " = " << Name << "->getUse(" << i << ");\n"; ReduceAllOperands(N->getChild(i), ChildName, Operands, OS); } } } /// PrintExpanderOperand - Print out Arg as part of the instruction emission /// process for the expander pattern P. This argument may be referencing some /// values defined in P, or may just be physical register references or /// something like that. If PrintArg is true, we are printing out arguments to /// the BuildMI call. If it is false, we are printing the result register /// name. void InstrSelectorEmitter::PrintExpanderOperand(Init *Arg, const std::string &NameVar, TreePatternNode *ArgDeclNode, Pattern *P, bool PrintArg, std::ostream &OS) { if (DefInit *DI = dynamic_cast(Arg)) { Record *Arg = DI->getDef(); if (!ArgDeclNode->isLeaf() && ArgDeclNode->getNumChildren() != 0) P->error("Expected leaf node as argument!"); Record *ArgDecl = ArgDeclNode->isLeaf() ? ArgDeclNode->getValueRecord() : ArgDeclNode->getOperator(); if (Arg->isSubClassOf("Register")) { // This is a physical register reference... make sure that the instruction // requested a register! if (!ArgDecl->isSubClassOf("RegisterClass")) P->error("Argument mismatch for instruction pattern!"); // FIXME: This should check to see if the register is in the specified // register class! if (PrintArg) OS << ".addReg("; OS << getQualifiedName(Arg); if (PrintArg) OS << ")"; return; } else if (Arg->isSubClassOf("RegisterClass")) { // If this is a symbolic register class reference, we must be using a // named value. if (NameVar.empty()) P->error("Did not specify WHICH register to pass!"); if (Arg != ArgDecl) P->error("Instruction pattern mismatch!"); if (PrintArg) OS << ".addReg("; OS << NameVar; if (PrintArg) OS << ")"; return; } else if (Arg->getName() == "frameidx") { if (!PrintArg) P->error("Cannot define a new frameidx value!"); OS << ".addFrameIndex(" << NameVar << ")"; return; } else if (Arg->getName() == "basicblock") { if (!PrintArg) P->error("Cannot define a new basicblock value!"); OS << ".addMBB(" << NameVar << ")"; return; } P->error("Unknown operand type '" + Arg->getName() + "' to expander!"); } else if (IntInit *II = dynamic_cast(Arg)) { if (!NameVar.empty()) P->error("Illegal to specify a name for a constant initializer arg!"); // Hack this check to allow R32 values with 0 as the initializer for memory // references... FIXME! if (ArgDeclNode->isLeaf() && II->getValue() == 0 && ArgDeclNode->getValueRecord()->getName() == "R32") { OS << ".addReg(0)"; } else { if (ArgDeclNode->isLeaf() || ArgDeclNode->getOperator()->getName()!="imm") P->error("Illegal immediate int value '" + itostr(II->getValue()) + "' operand!"); OS << ".addZImm(" << II->getValue() << ")"; } return; } P->error("Unknown operand type to expander!"); } static std::string getArgName(Pattern *P, const std::string &ArgName, const std::vector > &Operands) { assert(P->getNumArgs() == Operands.size() &&"Argument computation mismatch!"); if (ArgName.empty()) return ""; for (unsigned i = 0, e = P->getNumArgs(); i != e; ++i) if (P->getArgName(i) == ArgName) return Operands[i].second + "->Val"; if (ArgName == P->getResultName()) return "NewReg"; P->error("Pattern does not define a value named $" + ArgName + "!"); return ""; } void InstrSelectorEmitter::run(std::ostream &OS) { // Type-check all of the node types to ensure we "understand" them. ReadNodeTypes(); // Read in all of the nonterminals, instructions, and expanders... ReadNonterminals(); ReadInstructionPatterns(); ReadExpanderPatterns(); // Instantiate any unresolved nonterminals with information from the context // that they are used in. InstantiateNonterminals(); // Clear InstantiatedNTs, we don't need it anymore... InstantiatedNTs.clear(); DEBUG(std::cerr << "Patterns acquired:\n"); for (std::map::iterator I = Patterns.begin(), E = Patterns.end(); I != E; ++I) if (I->second->isResolved()) DEBUG(std::cerr << " " << *I->second << "\n"); CalculateComputableValues(); OS << "#include \"llvm/CodeGen/MachineInstrBuilder.h\"\n"; EmitSourceFileHeader("Instruction Selector for the " + Target.getName() + " target", OS); OS << "namespace llvm {\n\n"; // Output the slot number enums... OS << "\nenum { // Slot numbers...\n" << " LastBuiltinSlot = ISD::NumBuiltinSlots-1, // Start numbering here\n"; for (PatternOrganizer::iterator I = ComputableValues.begin(), E = ComputableValues.end(); I != E; ++I) OS << " " << I->first << "_Slot,\n"; OS << " NumSlots\n};\n\n// Reduction value typedefs...\n"; // Output the reduction value typedefs... for (PatternOrganizer::iterator I = ComputableValues.begin(), E = ComputableValues.end(); I != E; ++I) { OS << "typedef ReducedValuefirst << "_Slot> ReducedValue_" << I->first << ";\n"; } // Output the pattern enums... OS << "\n\n" << "enum { // Patterns...\n" << " NotComputed = 0,\n" << " NoMatchPattern, \n"; for (PatternOrganizer::iterator I = ComputableValues.begin(), E = ComputableValues.end(); I != E; ++I) { OS << " // " << I->first << " patterns...\n"; for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), E = I->second.end(); J != E; ++J) for (unsigned i = 0, e = J->second.size(); i != e; ++i) OS << " " << J->second[i]->getRecord()->getName() << "_Pattern,\n"; } OS << "};\n\n"; //===--------------------------------------------------------------------===// // Emit the class definition... // OS << "namespace {\n" << " class " << Target.getName() << "ISel {\n" << " SelectionDAG &DAG;\n" << " public:\n" << " " << Target.getName () << "ISel(SelectionDAG &D) : DAG(D) {}\n" << " void generateCode();\n" << " private:\n" << " unsigned makeAnotherReg(const TargetRegisterClass *RC) {\n" << " return DAG.getMachineFunction().getSSARegMap()->createVirt" "ualRegister(RC);\n" << " }\n\n" << " // DAG matching methods for classes... all of these methods" " return the cost\n" << " // of producing a value of the specified class and type, which" " also gets\n" << " // added to the DAG node.\n"; // Output all of the matching prototypes for slots... for (PatternOrganizer::iterator I = ComputableValues.begin(), E = ComputableValues.end(); I != E; ++I) OS << " unsigned Match_" << I->first << "(SelectionDAGNode *N);\n"; OS << "\n // DAG matching methods for DAG nodes...\n"; // Output all of the matching prototypes for slot/node pairs for (PatternOrganizer::iterator I = ComputableValues.begin(), E = ComputableValues.end(); I != E; ++I) for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), E = I->second.end(); J != E; ++J) OS << " unsigned Match_" << I->first << "_" << getNodeName(J->first) << "(SelectionDAGNode *N);\n"; // Output all of the dag reduction methods prototypes... OS << "\n // DAG reduction methods...\n"; for (PatternOrganizer::iterator I = ComputableValues.begin(), E = ComputableValues.end(); I != E; ++I) OS << " ReducedValue_" << I->first << " *Reduce_" << I->first << "(SelectionDAGNode *N,\n" << std::string(27+2*I->first.size(), ' ') << "MachineBasicBlock *MBB);\n"; OS << " };\n}\n\n"; // Emit the generateCode entry-point... OS << "void " << Target.getName () << "ISel::generateCode() {\n" << " SelectionDAGNode *Root = DAG.getRoot();\n" << " assert(Root->getValueType() == MVT::isVoid && " "\"Root of DAG produces value??\");\n\n" << " std::cerr << \"\\n\";\n" << " unsigned Cost = Match_Void_void(Root);\n" << " if (Cost >= ~0U >> 1) {\n" << " std::cerr << \"Match failed!\\n\";\n" << " Root->dump();\n" << " abort();\n" << " }\n\n" << " std::cerr << \"Total DAG Cost: \" << Cost << \"\\n\\n\";\n\n" << " Reduce_Void_void(Root, 0);\n" << "}\n\n" << "//===" << std::string(70, '-') << "===//\n" << "// Matching methods...\n" << "//\n\n"; //===--------------------------------------------------------------------===// // Emit all of the matcher methods... // for (PatternOrganizer::iterator I = ComputableValues.begin(), E = ComputableValues.end(); I != E; ++I) { const std::string &SlotName = I->first; OS << "unsigned " << Target.getName() << "ISel::Match_" << SlotName << "(SelectionDAGNode *N) {\n" << " assert(N->getValueType() == MVT::" << getEnumName((*I->second.begin()).second[0]->getTree()->getType()) << ");\n" << " // If we already have a cost available for " << SlotName << " use it!\n" << " if (N->getPatternFor(" << SlotName << "_Slot))\n" << " return N->getCostFor(" << SlotName << "_Slot);\n\n" << " unsigned Cost;\n" << " switch (N->getNodeType()) {\n" << " default: Cost = ~0U >> 1; // Match failed\n" << " N->setPatternCostFor(" << SlotName << "_Slot, NoMatchPattern, Cost, NumSlots);\n" << " break;\n"; for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), E = I->second.end(); J != E; ++J) if (!J->first->isSubClassOf("Nonterminal")) OS << " case ISD::" << getNodeName(J->first) << ":\tCost = Match_" << SlotName << "_" << getNodeName(J->first) << "(N); break;\n"; OS << " }\n"; // End of the switch statement // Emit any patterns which have a nonterminal leaf as the RHS. These may // match multiple root nodes, so they cannot be handled with the switch... for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), E = I->second.end(); J != E; ++J) if (J->first->isSubClassOf("Nonterminal")) { OS << " unsigned " << J->first->getName() << "_Cost = Match_" << getNodeName(J->first) << "(N);\n" << " if (" << getNodeName(J->first) << "_Cost < Cost) Cost = " << getNodeName(J->first) << "_Cost;\n"; } OS << " return Cost;\n}\n\n"; for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), E = I->second.end(); J != E; ++J) { Record *Operator = J->first; bool isNonterm = Operator->isSubClassOf("Nonterminal"); if (!isNonterm) { OS << "unsigned " << Target.getName() << "ISel::Match_"; if (!isNonterm) OS << SlotName << "_"; OS << getNodeName(Operator) << "(SelectionDAGNode *N) {\n" << " unsigned Pattern = NoMatchPattern;\n" << " unsigned MinCost = ~0U >> 1;\n"; std::vector > Patterns; for (unsigned i = 0, e = J->second.size(); i != e; ++i) Patterns.push_back(std::make_pair(J->second[i], J->second[i]->getTree())); EmitMatchCosters(OS, Patterns, "N", 2); OS << "\n N->setPatternCostFor(" << SlotName << "_Slot, Pattern, MinCost, NumSlots);\n" << " return MinCost;\n" << "}\n"; } } } //===--------------------------------------------------------------------===// // Emit all of the reducer methods... // OS << "\n\n//===" << std::string(70, '-') << "===//\n" << "// Reducer methods...\n" << "//\n"; for (PatternOrganizer::iterator I = ComputableValues.begin(), E = ComputableValues.end(); I != E; ++I) { const std::string &SlotName = I->first; OS << "ReducedValue_" << SlotName << " *" << Target.getName() << "ISel::Reduce_" << SlotName << "(SelectionDAGNode *N, MachineBasicBlock *MBB) {\n" << " ReducedValue_" << SlotName << " *Val = N->hasValue(" << SlotName << "_Slot);\n" << " if (Val) return Val;\n" << " if (N->getBB()) MBB = N->getBB();\n\n" << " switch (N->getPatternFor(" << SlotName << "_Slot)) {\n"; // Loop over all of the patterns that can produce a value for this slot... PatternOrganizer::NodesForSlot &NodesForSlot = I->second; for (PatternOrganizer::NodesForSlot::iterator J = NodesForSlot.begin(), E = NodesForSlot.end(); J != E; ++J) for (unsigned i = 0, e = J->second.size(); i != e; ++i) { Pattern *P = J->second[i]; OS << " case " << P->getRecord()->getName() << "_Pattern: {\n" << " // " << *P << "\n"; // Loop over the operands, reducing them... std::vector > Operands; ReduceAllOperands(P->getTree(), "N", Operands, OS); // Now that we have reduced all of our operands, and have the values // that reduction produces, perform the reduction action for this // pattern. std::string Result; // If the pattern produces a register result, generate a new register // now. if (Record *R = P->getResult()) { assert(R->isSubClassOf("RegisterClass") && "Only handle register class results so far!"); OS << " unsigned NewReg = makeAnotherReg(" << Target.getName() << "::" << R->getName() << "RegisterClass);\n"; Result = "NewReg"; DEBUG(OS << " std::cerr << \"%reg\" << NewReg << \" =\t\";\n"); } else { DEBUG(OS << " std::cerr << \"\t\t\";\n"); Result = "0"; } // Print out the pattern that matched... DEBUG(OS << " std::cerr << \" " << P->getRecord()->getName() <<'"'); DEBUG(for (unsigned i = 0, e = Operands.size(); i != e; ++i) if (Operands[i].first->isLeaf()) { Record *RV = Operands[i].first->getValueRecord(); assert(RV->isSubClassOf("RegisterClass") && "Only handles registers here so far!"); OS << " << \" %reg\" << " << Operands[i].second << "->Val"; } else { OS << " << ' ' << " << Operands[i].second << "->Val"; }); DEBUG(OS << " << \"\\n\";\n"); // Generate the reduction code appropriate to the particular type of // pattern that this is... switch (P->getPatternType()) { case Pattern::Instruction: // Instruction patterns just emit a single MachineInstr, using BuildMI OS << " BuildMI(MBB, " << Target.getName() << "::" << P->getRecord()->getName() << ", " << Operands.size(); if (P->getResult()) OS << ", NewReg"; OS << ")"; for (unsigned i = 0, e = Operands.size(); i != e; ++i) { TreePatternNode *Op = Operands[i].first; if (Op->isLeaf()) { Record *RV = Op->getValueRecord(); assert(RV->isSubClassOf("RegisterClass") && "Only handles registers here so far!"); OS << ".addReg(" << Operands[i].second << "->Val)"; } else if (Op->getOperator()->getName() == "imm") { OS << ".addZImm(" << Operands[i].second << "->Val)"; } else if (Op->getOperator()->getName() == "basicblock") { OS << ".addMBB(" << Operands[i].second << "->Val)"; } else { assert(0 && "Unknown value type!"); } } OS << ";\n"; break; case Pattern::Expander: { // Expander patterns emit one machine instr for each instruction in // the list of instructions expanded to. ListInit *Insts = P->getRecord()->getValueAsListInit("Result"); for (unsigned IN = 0, e = Insts->getSize(); IN != e; ++IN) { DagInit *DIInst = dynamic_cast(Insts->getElement(IN)); if (!DIInst) P->error("Result list must contain instructions!"); Record *InstRec = DIInst->getNodeType(); Pattern *InstPat = getPattern(InstRec); if (!InstPat || InstPat->getPatternType() != Pattern::Instruction) P->error("Instruction list must contain Instruction patterns!"); bool hasResult = InstPat->getResult() != 0; if (InstPat->getNumArgs() != DIInst->getNumArgs()-hasResult) { P->error("Incorrect number of arguments specified for inst '" + InstPat->getRecord()->getName() + "' in result list!"); } // Start emission of the instruction... OS << " BuildMI(MBB, " << Target.getName() << "::" << InstRec->getName() << ", " << DIInst->getNumArgs()-hasResult; // Emit register result if necessary.. if (hasResult) { std::string ArgNameVal = getArgName(P, DIInst->getArgName(0), Operands); PrintExpanderOperand(DIInst->getArg(0), ArgNameVal, InstPat->getResultNode(), P, false, OS << ", "); } OS << ")"; for (unsigned i = hasResult, e = DIInst->getNumArgs(); i != e; ++i){ std::string ArgNameVal = getArgName(P, DIInst->getArgName(i), Operands); PrintExpanderOperand(DIInst->getArg(i), ArgNameVal, InstPat->getArg(i-hasResult), P, true, OS); } OS << ";\n"; } break; } default: assert(0 && "Reduction of this type of pattern not implemented!"); } OS << " Val = new ReducedValue_" << SlotName << "(" << Result<<");\n" << " break;\n" << " }\n"; } OS << " default: assert(0 && \"Unknown " << SlotName << " pattern!\");\n" << " }\n\n N->addValue(Val); // Do not ever recalculate this\n" << " return Val;\n}\n\n"; } OS << "} // End llvm namespace \n"; }