//===- InlineSimple.cpp - Code to perform simple function inlining --------===// // // This file implements bottom-up inlining of functions into callees. // //===----------------------------------------------------------------------===// #include "Inliner.h" #include "llvm/Function.h" #include "llvm/iMemory.h" #include "llvm/Support/CallSite.h" #include "llvm/Transforms/IPO.h" namespace { // FunctionInfo - For each function, calculate the size of it in blocks and // instructions. struct FunctionInfo { unsigned NumInsts, NumBlocks; FunctionInfo() : NumInsts(0), NumBlocks(0) {} }; class SimpleInliner : public Inliner { std::map CachedFunctionInfo; public: int getInlineCost(CallSite CS); }; RegisterOpt X("inline", "Function Integration/Inlining"); } Pass *createFunctionInliningPass() { return new SimpleInliner(); } // getInlineCost - The heuristic used to determine if we should inline the // function call or not. // int SimpleInliner::getInlineCost(CallSite CS) { Instruction *TheCall = CS.getInstruction(); const Function *Callee = CS.getCalledFunction(); const Function *Caller = TheCall->getParent()->getParent(); // Don't inline a directly recursive call. if (Caller == Callee) return 2000000000; // InlineCost - This value measures how good of an inline candidate this call // site is to inline. A lower inline cost make is more likely for the call to // be inlined. This value may go negative. // int InlineCost = 0; // If there is only one call of the function, and it has internal linkage, // make it almost guaranteed to be inlined. // if (Callee->hasInternalLinkage() && Callee->hasOneUse()) InlineCost -= 30000; // Add to the inline quality for properties that make the call valuable to // inline. This includes factors that indicate that the result of inlining // the function will be optimizable. Currently this just looks at arguments // passed into the function. // for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) { // Each argument passed in has a cost at both the caller and the callee // sides. This favors functions that take many arguments over functions // that take few arguments. InlineCost -= 20; // If this is a function being passed in, it is very likely that we will be // able to turn an indirect function call into a direct function call. if (isa(I)) InlineCost -= 100; // If a constant, global variable or alloca is passed in, inlining this // function is likely to allow significant future optimization possibilities // (constant propagation, scalar promotion, and scalarization), so encourage // the inlining of the function. // else if (isa(I) || isa(I) || isa(I)) InlineCost -= 60; } // Now that we have considered all of the factors that make the call site more // likely to be inlined, look at factors that make us not want to inline it. FunctionInfo &CalleeFI = CachedFunctionInfo[Callee]; // If we haven't calculated this information yet... if (CalleeFI.NumBlocks == 0) { unsigned NumInsts = 0, NumBlocks = 0; // Look at the size of the callee. Each basic block counts as 20 units, and // each instruction counts as 10. for (Function::const_iterator BB = Callee->begin(), E = Callee->end(); BB != E; ++BB) { NumInsts += BB->size(); NumBlocks++; } CalleeFI.NumBlocks = NumBlocks; CalleeFI.NumInsts = NumInsts; } // Don't inline into something too big, which would make it bigger. Here, we // count each basic block as a single unit. InlineCost += Caller->size()*2; // Look at the size of the callee. Each basic block counts as 20 units, and // each instruction counts as 10. InlineCost += CalleeFI.NumInsts*10 + CalleeFI.NumBlocks*20; return InlineCost; }