//===-- Writer.cpp - Library for Printing VM assembly files ------*- C++ -*--=// // // This library implements the functionality defined in llvm/Assembly/Writer.h // // This library uses the Analysis library to figure out offsets for // variables in the method tables... // // TODO: print out the type name instead of the full type if a particular type // is in the symbol table... // //===----------------------------------------------------------------------===// #include "llvm/Assembly/CachedWriter.h" #include "llvm/Analysis/SlotCalculator.h" #include "llvm/Module.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/BasicBlock.h" #include "llvm/ConstantVals.h" #include "llvm/iMemory.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include "llvm/SymbolTable.h" #include "Support/StringExtras.h" #include "Support/STLExtras.h" #include #include using std::string; using std::map; using std::vector; using std::ostream; static const Module *getModuleFromVal(const Value *V) { if (const FunctionArgument *MA = dyn_cast(V)) return MA->getParent() ? MA->getParent()->getParent() : 0; else if (const BasicBlock *BB = dyn_cast(V)) return BB->getParent() ? BB->getParent()->getParent() : 0; else if (const Instruction *I = dyn_cast(V)) { const Function *M = I->getParent() ? I->getParent()->getParent() : 0; return M ? M->getParent() : 0; } else if (const GlobalValue *GV = dyn_cast(V)) return GV->getParent(); else if (const Module *Mod = dyn_cast(V)) return Mod; return 0; } static SlotCalculator *createSlotCalculator(const Value *V) { assert(!isa(V) && "Can't create an SC for a type!"); if (const FunctionArgument *FA = dyn_cast(V)) { return new SlotCalculator(FA->getParent(), true); } else if (const Instruction *I = dyn_cast(V)) { return new SlotCalculator(I->getParent()->getParent(), true); } else if (const BasicBlock *BB = dyn_cast(V)) { return new SlotCalculator(BB->getParent(), true); } else if (const GlobalVariable *GV = dyn_cast(V)){ return new SlotCalculator(GV->getParent(), true); } else if (const Function *Func = dyn_cast(V)) { return new SlotCalculator(Func, true); } else if (const Module *Mod = dyn_cast(V)) { return new SlotCalculator(Mod, true); } return 0; } // WriteAsOperand - Write the name of the specified value out to the specified // ostream. This can be useful when you just want to print int %reg126, not the // whole instruction that generated it. // static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName, SlotCalculator *Table) { if (PrintName && V->hasName()) { Out << " %" << V->getName(); } else { if (const Constant *CPV = dyn_cast(V)) { Out << " " << CPV->getStrValue(); } else { int Slot; if (Table) { Slot = Table->getValSlot(V); } else { if (const Type *Ty = dyn_cast(V)) { Out << " " << Ty->getDescription(); return; } Table = createSlotCalculator(V); if (Table == 0) { Out << "BAD VALUE TYPE!"; return; } Slot = Table->getValSlot(V); delete Table; } if (Slot >= 0) Out << " %" << Slot; else if (PrintName) Out << ""; // Not embeded into a location? } } } // If the module has a symbol table, take all global types and stuff their // names into the TypeNames map. // static void fillTypeNameTable(const Module *M, map &TypeNames) { if (M && M->hasSymbolTable()) { const SymbolTable *ST = M->getSymbolTable(); SymbolTable::const_iterator PI = ST->find(Type::TypeTy); if (PI != ST->end()) { SymbolTable::type_const_iterator I = PI->second.begin(); for (; I != PI->second.end(); ++I) { // As a heuristic, don't insert pointer to primitive types, because // they are used too often to have a single useful name. // const Type *Ty = cast(I->second); if (!isa(Ty) || !cast(Ty)->getElementType()->isPrimitiveType()) TypeNames.insert(std::make_pair(Ty, "%"+I->first)); } } } } static string calcTypeName(const Type *Ty, vector &TypeStack, map &TypeNames) { if (Ty->isPrimitiveType()) return Ty->getDescription(); // Base case // Check to see if the type is named. map::iterator I = TypeNames.find(Ty); if (I != TypeNames.end()) return I->second; // Check to see if the Type is already on the stack... unsigned Slot = 0, CurSize = TypeStack.size(); while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type // This is another base case for the recursion. In this case, we know // that we have looped back to a type that we have previously visited. // Generate the appropriate upreference to handle this. // if (Slot < CurSize) return "\\" + utostr(CurSize-Slot); // Here's the upreference TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. string Result; switch (Ty->getPrimitiveID()) { case Type::FunctionTyID: { const FunctionType *MTy = cast(Ty); Result = calcTypeName(MTy->getReturnType(), TypeStack, TypeNames) + " ("; for (FunctionType::ParamTypes::const_iterator I = MTy->getParamTypes().begin(), E = MTy->getParamTypes().end(); I != E; ++I) { if (I != MTy->getParamTypes().begin()) Result += ", "; Result += calcTypeName(*I, TypeStack, TypeNames); } if (MTy->isVarArg()) { if (!MTy->getParamTypes().empty()) Result += ", "; Result += "..."; } Result += ")"; break; } case Type::StructTyID: { const StructType *STy = cast(Ty); Result = "{ "; for (StructType::ElementTypes::const_iterator I = STy->getElementTypes().begin(), E = STy->getElementTypes().end(); I != E; ++I) { if (I != STy->getElementTypes().begin()) Result += ", "; Result += calcTypeName(*I, TypeStack, TypeNames); } Result += " }"; break; } case Type::PointerTyID: Result = calcTypeName(cast(Ty)->getElementType(), TypeStack, TypeNames) + " *"; break; case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); int NumElements = ATy->getNumElements(); Result = "["; if (NumElements != -1) Result += itostr(NumElements) + " x "; Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]"; break; } default: assert(0 && "Unhandled case in getTypeProps!"); Result = ""; } TypeStack.pop_back(); // Remove self from stack... return Result; } // printTypeInt - The internal guts of printing out a type that has a // potentially named portion. // static ostream &printTypeInt(ostream &Out, const Type *Ty, map &TypeNames) { // Primitive types always print out their description, regardless of whether // they have been named or not. // if (Ty->isPrimitiveType()) return Out << Ty->getDescription(); // Check to see if the type is named. map::iterator I = TypeNames.find(Ty); if (I != TypeNames.end()) return Out << I->second; // Otherwise we have a type that has not been named but is a derived type. // Carefully recurse the type hierarchy to print out any contained symbolic // names. // vector TypeStack; string TypeName = calcTypeName(Ty, TypeStack, TypeNames); TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use return Out << TypeName; } // WriteTypeSymbolic - This attempts to write the specified type as a symbolic // type, iff there is an entry in the modules symbol table for the specified // type or one of it's component types. This is slower than a simple x << Type; // ostream &WriteTypeSymbolic(ostream &Out, const Type *Ty, const Module *M) { Out << " "; // If they want us to print out a type, attempt to make it symbolic if there // is a symbol table in the module... if (M && M->hasSymbolTable()) { map TypeNames; fillTypeNameTable(M, TypeNames); return printTypeInt(Out, Ty, TypeNames); } else { return Out << Ty->getDescription(); } } // WriteAsOperand - Write the name of the specified value out to the specified // ostream. This can be useful when you just want to print int %reg126, not the // whole instruction that generated it. // ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType, bool PrintName, SlotCalculator *Table) { if (PrintType) WriteTypeSymbolic(Out, V->getType(), getModuleFromVal(V)); WriteAsOperandInternal(Out, V, PrintName, Table); return Out; } class AssemblyWriter { ostream &Out; SlotCalculator &Table; const Module *TheModule; map TypeNames; public: inline AssemblyWriter(ostream &o, SlotCalculator &Tab, const Module *M) : Out(o), Table(Tab), TheModule(M) { // If the module has a symbol table, take all global types and stuff their // names into the TypeNames map. // fillTypeNameTable(M, TypeNames); } inline void write(const Module *M) { printModule(M); } inline void write(const GlobalVariable *G) { printGlobal(G); } inline void write(const Function *F) { printFunction(F); } inline void write(const BasicBlock *BB) { printBasicBlock(BB); } inline void write(const Instruction *I) { printInstruction(I); } inline void write(const Constant *CPV) { printConstant(CPV); } inline void write(const Type *Ty) { printType(Ty); } private : void printModule(const Module *M); void printSymbolTable(const SymbolTable &ST); void printConstant(const Constant *CPV); void printGlobal(const GlobalVariable *GV); void printFunction(const Function *F); void printFunctionArgument(const FunctionArgument *FA); void printBasicBlock(const BasicBlock *BB); void printInstruction(const Instruction *I); ostream &printType(const Type *Ty); void writeOperand(const Value *Op, bool PrintType, bool PrintName = true); // printInfoComment - Print a little comment after the instruction indicating // which slot it occupies. void printInfoComment(const Value *V); }; void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType, bool PrintName) { if (PrintType) { Out << " "; printType(Operand->getType()); } WriteAsOperandInternal(Out, Operand, PrintName, &Table); } void AssemblyWriter::printModule(const Module *M) { // Loop over the symbol table, emitting all named constants... if (M->hasSymbolTable()) printSymbolTable(*M->getSymbolTable()); for_each(M->gbegin(), M->gend(), bind_obj(this, &AssemblyWriter::printGlobal)); Out << "implementation\n"; // Output all of the methods... for_each(M->begin(), M->end(), bind_obj(this,&AssemblyWriter::printFunction)); } void AssemblyWriter::printGlobal(const GlobalVariable *GV) { if (GV->hasName()) Out << "%" << GV->getName() << " = "; if (GV->hasInternalLinkage()) Out << "internal "; if (!GV->hasInitializer()) Out << "uninitialized "; Out << (GV->isConstant() ? "constant " : "global "); printType(GV->getType()->getElementType()); if (GV->hasInitializer()) writeOperand(GV->getInitializer(), false, false); printInfoComment(GV); Out << "\n"; } // printSymbolTable - Run through symbol table looking for named constants // if a named constant is found, emit it's declaration... // void AssemblyWriter::printSymbolTable(const SymbolTable &ST) { for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) { SymbolTable::type_const_iterator I = ST.type_begin(TI->first); SymbolTable::type_const_iterator End = ST.type_end(TI->first); for (; I != End; ++I) { const Value *V = I->second; if (const Constant *CPV = dyn_cast(V)) { printConstant(CPV); } else if (const Type *Ty = dyn_cast(V)) { Out << "\t%" << I->first << " = type " << Ty->getDescription() << "\n"; } } } } // printConstant - Print out a constant pool entry... // void AssemblyWriter::printConstant(const Constant *CPV) { // Don't print out unnamed constants, they will be inlined if (!CPV->hasName()) return; // Print out name... Out << "\t%" << CPV->getName() << " = "; // Print out the constant type... printType(CPV->getType()); // Write the value out now... writeOperand(CPV, false, false); if (!CPV->hasName() && CPV->getType() != Type::VoidTy) { int Slot = Table.getValSlot(CPV); // Print out the def slot taken... Out << "\t\t; <"; printType(CPV->getType()) << ">:"; if (Slot >= 0) Out << Slot; else Out << ""; } Out << "\n"; } // printFunction - Print all aspects of a method. // void AssemblyWriter::printFunction(const Function *M) { // Print out the return type and name... Out << "\n" << (M->isExternal() ? "declare " : "") << (M->hasInternalLinkage() ? "internal " : ""); printType(M->getReturnType()) << " \"" << M->getName() << "\"("; Table.incorporateMethod(M); // Loop over the arguments, printing them... const FunctionType *MT = M->getFunctionType(); if (!M->isExternal()) { for_each(M->getArgumentList().begin(), M->getArgumentList().end(), bind_obj(this, &AssemblyWriter::printFunctionArgument)); } else { // Loop over the arguments, printing them... const FunctionType *MT = M->getFunctionType(); for (FunctionType::ParamTypes::const_iterator I = MT->getParamTypes().begin(), E = MT->getParamTypes().end(); I != E; ++I) { if (I != MT->getParamTypes().begin()) Out << ", "; printType(*I); } } // Finish printing arguments... if (MT->isVarArg()) { if (MT->getParamTypes().size()) Out << ", "; Out << "..."; // Output varargs portion of signature! } Out << ")\n"; if (!M->isExternal()) { // Loop over the symbol table, emitting all named constants... if (M->hasSymbolTable()) printSymbolTable(*M->getSymbolTable()); Out << "begin"; // Output all of its basic blocks... for the method for_each(M->begin(), M->end(), bind_obj(this, &AssemblyWriter::printBasicBlock)); Out << "end\n"; } Table.purgeMethod(); } // printFunctionArgument - This member is called for every argument that // is passed into the method. Simply print it out // void AssemblyWriter::printFunctionArgument(const FunctionArgument *Arg) { // Insert commas as we go... the first arg doesn't get a comma if (Arg != Arg->getParent()->getArgumentList().front()) Out << ", "; // Output type... printType(Arg->getType()); // Output name, if available... if (Arg->hasName()) Out << " %" << Arg->getName(); else if (Table.getValSlot(Arg) < 0) Out << ""; } // printBasicBlock - This member is called for each basic block in a methd. // void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { if (BB->hasName()) { // Print out the label if it exists... Out << "\n" << BB->getName() << ":"; } else { int Slot = Table.getValSlot(BB); Out << "\n;