//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass which is used // by the Linear Scan Register allocator. This pass linearizes the // basic blocks of the function in DFS order and uses the // LiveVariables pass to conservatively compute live intervals for // each virtual and physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/Value.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include #include using namespace llvm; // Hidden options for help debugging. static cl::opt DisableReMat("disable-rematerialization", cl::init(false), cl::Hidden); STATISTIC(numIntervals , "Number of original intervals"); char LiveIntervals::ID = 0; INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(LiveVariables) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_END(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(MachineLoopInfoID); AU.addPreservedID(MachineDominatorsID); AU.addPreserved(); AU.addRequiredTransitive(); MachineFunctionPass::getAnalysisUsage(AU); } void LiveIntervals::releaseMemory() { // Free the live intervals themselves. for (DenseMap::iterator I = r2iMap_.begin(), E = r2iMap_.end(); I != E; ++I) delete I->second; r2iMap_.clear(); RegMaskSlots.clear(); RegMaskBits.clear(); RegMaskBlocks.clear(); // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. VNInfoAllocator.Reset(); } /// runOnMachineFunction - Register allocate the whole function /// bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; mri_ = &mf_->getRegInfo(); tm_ = &fn.getTarget(); tri_ = tm_->getRegisterInfo(); tii_ = tm_->getInstrInfo(); aa_ = &getAnalysis(); lv_ = &getAnalysis(); indexes_ = &getAnalysis(); allocatableRegs_ = tri_->getAllocatableSet(fn); reservedRegs_ = tri_->getReservedRegs(fn); computeIntervals(); numIntervals += getNumIntervals(); DEBUG(dump()); return true; } /// print - Implement the dump method. void LiveIntervals::print(raw_ostream &OS, const Module* ) const { OS << "********** INTERVALS **********\n"; // Dump the physregs. for (unsigned Reg = 1, RegE = tri_->getNumRegs(); Reg != RegE; ++Reg) if (const LiveInterval *LI = r2iMap_.lookup(Reg)) { LI->print(OS, tri_); OS << '\n'; } // Dump the virtregs. for (unsigned Reg = 0, RegE = mri_->getNumVirtRegs(); Reg != RegE; ++Reg) if (const LiveInterval *LI = r2iMap_.lookup(TargetRegisterInfo::index2VirtReg(Reg))) { LI->print(OS, tri_); OS << '\n'; } printInstrs(OS); } void LiveIntervals::printInstrs(raw_ostream &OS) const { OS << "********** MACHINEINSTRS **********\n"; mf_->print(OS, indexes_); } void LiveIntervals::dumpInstrs() const { printInstrs(dbgs()); } static bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) { unsigned Reg = MI.getOperand(MOIdx).getReg(); for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; if (MO.getReg() == Reg && MO.isDef()) { assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() && MI.getOperand(MOIdx).getSubReg() && (MO.getSubReg() || MO.isImplicit())); return true; } } return false; } /// isPartialRedef - Return true if the specified def at the specific index is /// partially re-defining the specified live interval. A common case of this is /// a definition of the sub-register. bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO, LiveInterval &interval) { if (!MO.getSubReg() || MO.isEarlyClobber()) return false; SlotIndex RedefIndex = MIIdx.getRegSlot(); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def); if (DefMI != 0) { return DefMI->findRegisterDefOperandIdx(interval.reg) != -1; } return false; } void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, MachineBasicBlock::iterator mi, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx, LiveInterval &interval) { DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_)); // Virtual registers may be defined multiple times (due to phi // elimination and 2-addr elimination). Much of what we do only has to be // done once for the vreg. We use an empty interval to detect the first // time we see a vreg. LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); if (interval.empty()) { // Get the Idx of the defining instructions. SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); // Make sure the first definition is not a partial redefinition. Add an // of the full register. // FIXME: LiveIntervals shouldn't modify the code like this. Whoever // created the machine instruction should annotate it with flags // as needed. Then we can simply assert here. The REG_SEQUENCE lowering // is the main suspect. if (MO.getSubReg()) { mi->addRegisterDefined(interval.reg); // Mark all defs of interval.reg on this instruction as reading . for (unsigned i = MOIdx, e = mi->getNumOperands(); i != e; ++i) { MachineOperand &MO2 = mi->getOperand(i); if (MO2.isReg() && MO2.getReg() == interval.reg && MO2.getSubReg()) MO2.setIsUndef(); } } VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); assert(ValNo->id == 0 && "First value in interval is not 0?"); // Loop over all of the blocks that the vreg is defined in. There are // two cases we have to handle here. The most common case is a vreg // whose lifetime is contained within a basic block. In this case there // will be a single kill, in MBB, which comes after the definition. if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { // FIXME: what about dead vars? SlotIndex killIdx; if (vi.Kills[0] != mi) killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot(); else killIdx = defIndex.getDeadSlot(); // If the kill happens after the definition, we have an intra-block // live range. if (killIdx > defIndex) { assert(vi.AliveBlocks.empty() && "Shouldn't be alive across any blocks!"); LiveRange LR(defIndex, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << "\n"); return; } } // The other case we handle is when a virtual register lives to the end // of the defining block, potentially live across some blocks, then is // live into some number of blocks, but gets killed. Start by adding a // range that goes from this definition to the end of the defining block. LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo); DEBUG(dbgs() << " +" << NewLR); interval.addRange(NewLR); bool PHIJoin = lv_->isPHIJoin(interval.reg); if (PHIJoin) { // A phi join register is killed at the end of the MBB and revived as a new // valno in the killing blocks. assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks"); DEBUG(dbgs() << " phi-join"); ValNo->setHasPHIKill(true); } else { // Iterate over all of the blocks that the variable is completely // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the // live interval. for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(), E = vi.AliveBlocks.end(); I != E; ++I) { MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I); LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } // Finally, this virtual register is live from the start of any killing // block to the 'use' slot of the killing instruction. for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { MachineInstr *Kill = vi.Kills[i]; SlotIndex Start = getMBBStartIdx(Kill->getParent()); SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot(); // Create interval with one of a NEW value number. Note that this value // number isn't actually defined by an instruction, weird huh? :) if (PHIJoin) { assert(getInstructionFromIndex(Start) == 0 && "PHI def index points at actual instruction."); ValNo = interval.getNextValue(Start, VNInfoAllocator); ValNo->setIsPHIDef(true); } LiveRange LR(Start, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } else { if (MultipleDefsBySameMI(*mi, MOIdx)) // Multiple defs of the same virtual register by the same instruction. // e.g. %reg1031:5, %reg1031:6 = VLD1q16 %reg1024, ... // This is likely due to elimination of REG_SEQUENCE instructions. Return // here since there is nothing to do. return; // If this is the second time we see a virtual register definition, it // must be due to phi elimination or two addr elimination. If this is // the result of two address elimination, then the vreg is one of the // def-and-use register operand. // It may also be partial redef like this: // 80 %reg1041:6 = VSHRNv4i16 %reg1034, 12, pred:14, pred:%reg0 // 120 %reg1041:5 = VSHRNv4i16 %reg1039, 12, pred:14, pred:%reg0 bool PartReDef = isPartialRedef(MIIdx, MO, interval); if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) { // If this is a two-address definition, then we have already processed // the live range. The only problem is that we didn't realize there // are actually two values in the live interval. Because of this we // need to take the LiveRegion that defines this register and split it // into two values. SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); VNInfo *OldValNo = OldLR->valno; SlotIndex DefIndex = OldValNo->def.getRegSlot(); // Delete the previous value, which should be short and continuous, // because the 2-addr copy must be in the same MBB as the redef. interval.removeRange(DefIndex, RedefIndex); // The new value number (#1) is defined by the instruction we claimed // defined value #0. VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator); // Value#0 is now defined by the 2-addr instruction. OldValNo->def = RedefIndex; // Add the new live interval which replaces the range for the input copy. LiveRange LR(DefIndex, RedefIndex, ValNo); DEBUG(dbgs() << " replace range with " << LR); interval.addRange(LR); // If this redefinition is dead, we need to add a dummy unit live // range covering the def slot. if (MO.isDead()) interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(), OldValNo)); DEBUG({ dbgs() << " RESULT: "; interval.print(dbgs(), tri_); }); } else if (lv_->isPHIJoin(interval.reg)) { // In the case of PHI elimination, each variable definition is only // live until the end of the block. We've already taken care of the // rest of the live range. SlotIndex defIndex = MIIdx.getRegSlot(); if (MO.isEarlyClobber()) defIndex = MIIdx.getRegSlot(true); VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); SlotIndex killIndex = getMBBEndIdx(mbb); LiveRange LR(defIndex, killIndex, ValNo); interval.addRange(LR); ValNo->setHasPHIKill(true); DEBUG(dbgs() << " phi-join +" << LR); } else { llvm_unreachable("Multiply defined register"); } } DEBUG(dbgs() << '\n'); } static bool isRegLiveIntoSuccessor(const MachineBasicBlock *MBB, unsigned Reg) { for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { const MachineBasicBlock* succ = *SI; if (succ->isLiveIn(Reg)) return true; } return false; } void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator mi, SlotIndex MIIdx, MachineOperand& MO, LiveInterval &interval) { DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_)); SlotIndex baseIndex = MIIdx; SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber()); SlotIndex end = start; // If it is not used after definition, it is considered dead at // the instruction defining it. Hence its interval is: // [defSlot(def), defSlot(def)+1) // For earlyclobbers, the defSlot was pushed back one; the extra // advance below compensates. if (MO.isDead()) { DEBUG(dbgs() << " dead"); end = start.getDeadSlot(); goto exit; } // If it is not dead on definition, it must be killed by a // subsequent instruction. Hence its interval is: // [defSlot(def), useSlot(kill)+1) baseIndex = baseIndex.getNextIndex(); while (++mi != MBB->end()) { if (mi->isDebugValue()) continue; if (getInstructionFromIndex(baseIndex) == 0) baseIndex = indexes_->getNextNonNullIndex(baseIndex); if (mi->killsRegister(interval.reg, tri_)) { DEBUG(dbgs() << " killed"); end = baseIndex.getRegSlot(); goto exit; } else { int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_); if (DefIdx != -1) { if (mi->isRegTiedToUseOperand(DefIdx)) { // Two-address instruction. end = baseIndex.getRegSlot(mi->getOperand(DefIdx).isEarlyClobber()); } else { // Another instruction redefines the register before it is ever read. // Then the register is essentially dead at the instruction that // defines it. Hence its interval is: // [defSlot(def), defSlot(def)+1) DEBUG(dbgs() << " dead"); end = start.getDeadSlot(); } goto exit; } } baseIndex = baseIndex.getNextIndex(); } // If we get here the register *should* be live out. assert(!isAllocatable(interval.reg) && "Physregs shouldn't be live out!"); // FIXME: We need saner rules for reserved regs. if (isReserved(interval.reg)) { end = start.getDeadSlot(); } else { // Unreserved, unallocable registers like EFLAGS can be live across basic // block boundaries. assert(isRegLiveIntoSuccessor(MBB, interval.reg) && "Unreserved reg not live-out?"); end = getMBBEndIdx(MBB); } exit: assert(start < end && "did not find end of interval?"); // Already exists? Extend old live interval. VNInfo *ValNo = interval.getVNInfoAt(start); bool Extend = ValNo != 0; if (!Extend) ValNo = interval.getNextValue(start, VNInfoAllocator); LiveRange LR(start, end, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << '\n'); } void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx) { if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx, getOrCreateInterval(MO.getReg())); else handlePhysicalRegisterDef(MBB, MI, MIIdx, MO, getOrCreateInterval(MO.getReg())); } void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB, SlotIndex MIIdx, LiveInterval &interval) { assert(TargetRegisterInfo::isPhysicalRegister(interval.reg) && "Only physical registers can be live in."); assert((!isAllocatable(interval.reg) || MBB->getParent()->begin() || MBB->isLandingPad()) && "Allocatable live-ins only valid for entry blocks and landing pads."); DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_)); // Look for kills, if it reaches a def before it's killed, then it shouldn't // be considered a livein. MachineBasicBlock::iterator mi = MBB->begin(); MachineBasicBlock::iterator E = MBB->end(); // Skip over DBG_VALUE at the start of the MBB. if (mi != E && mi->isDebugValue()) { while (++mi != E && mi->isDebugValue()) ; if (mi == E) // MBB is empty except for DBG_VALUE's. return; } SlotIndex baseIndex = MIIdx; SlotIndex start = baseIndex; if (getInstructionFromIndex(baseIndex) == 0) baseIndex = indexes_->getNextNonNullIndex(baseIndex); SlotIndex end = baseIndex; bool SeenDefUse = false; while (mi != E) { if (mi->killsRegister(interval.reg, tri_)) { DEBUG(dbgs() << " killed"); end = baseIndex.getRegSlot(); SeenDefUse = true; break; } else if (mi->modifiesRegister(interval.reg, tri_)) { // Another instruction redefines the register before it is ever read. // Then the register is essentially dead at the instruction that defines // it. Hence its interval is: // [defSlot(def), defSlot(def)+1) DEBUG(dbgs() << " dead"); end = start.getDeadSlot(); SeenDefUse = true; break; } while (++mi != E && mi->isDebugValue()) // Skip over DBG_VALUE. ; if (mi != E) baseIndex = indexes_->getNextNonNullIndex(baseIndex); } // Live-in register might not be used at all. if (!SeenDefUse) { if (isAllocatable(interval.reg) || !isRegLiveIntoSuccessor(MBB, interval.reg)) { // Allocatable registers are never live through. // Non-allocatable registers that aren't live into any successors also // aren't live through. DEBUG(dbgs() << " dead"); return; } else { // If we get here the register is non-allocatable and live into some // successor. We'll conservatively assume it's live-through. DEBUG(dbgs() << " live through"); end = getMBBEndIdx(MBB); } } SlotIndex defIdx = getMBBStartIdx(MBB); assert(getInstructionFromIndex(defIdx) == 0 && "PHI def index points at actual instruction."); VNInfo *vni = interval.getNextValue(defIdx, VNInfoAllocator); vni->setIsPHIDef(true); LiveRange LR(start, end, vni); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << '\n'); } /// computeIntervals - computes the live intervals for virtual /// registers. for some ordering of the machine instructions [1,N] a /// live interval is an interval [i, j) where 1 <= i <= j < N for /// which a variable is live void LiveIntervals::computeIntervals() { DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n" << "********** Function: " << ((Value*)mf_->getFunction())->getName() << '\n'); RegMaskBlocks.resize(mf_->getNumBlockIDs()); SmallVector UndefUses; for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = MBBI; RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size(); if (MBB->empty()) continue; // Track the index of the current machine instr. SlotIndex MIIndex = getMBBStartIdx(MBB); DEBUG(dbgs() << "BB#" << MBB->getNumber() << ":\t\t# derived from " << MBB->getName() << "\n"); // Create intervals for live-ins to this BB first. for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), LE = MBB->livein_end(); LI != LE; ++LI) { handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI)); } // Skip over empty initial indices. if (getInstructionFromIndex(MIIndex) == 0) MIIndex = indexes_->getNextNonNullIndex(MIIndex); for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); MI != miEnd; ++MI) { DEBUG(dbgs() << MIIndex << "\t" << *MI); if (MI->isDebugValue()) continue; assert(indexes_->getInstructionFromIndex(MIIndex) == MI && "Lost SlotIndex synchronization"); // Handle defs. for (int i = MI->getNumOperands() - 1; i >= 0; --i) { MachineOperand &MO = MI->getOperand(i); // Collect register masks. if (MO.isRegMask()) { RegMaskSlots.push_back(MIIndex.getRegSlot()); RegMaskBits.push_back(MO.getRegMask()); continue; } if (!MO.isReg() || !MO.getReg()) continue; // handle register defs - build intervals if (MO.isDef()) handleRegisterDef(MBB, MI, MIIndex, MO, i); else if (MO.isUndef()) UndefUses.push_back(MO.getReg()); } // Move to the next instr slot. MIIndex = indexes_->getNextNonNullIndex(MIIndex); } // Compute the number of register mask instructions in this block. std::pair &RMB = RegMaskBlocks[MBB->getNumber()]; RMB.second = RegMaskSlots.size() - RMB.first;; } // Create empty intervals for registers defined by implicit_def's (except // for those implicit_def that define values which are liveout of their // blocks. for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) { unsigned UndefReg = UndefUses[i]; (void)getOrCreateInterval(UndefReg); } } LiveInterval* LiveIntervals::createInterval(unsigned reg) { float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F; return new LiveInterval(reg, Weight); } /// dupInterval - Duplicate a live interval. The caller is responsible for /// managing the allocated memory. LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) { LiveInterval *NewLI = createInterval(li->reg); NewLI->Copy(*li, mri_, getVNInfoAllocator()); return NewLI; } /// shrinkToUses - After removing some uses of a register, shrink its live /// range to just the remaining uses. This method does not compute reaching /// defs for new uses, and it doesn't remove dead defs. bool LiveIntervals::shrinkToUses(LiveInterval *li, SmallVectorImpl *dead) { DEBUG(dbgs() << "Shrink: " << *li << '\n'); assert(TargetRegisterInfo::isVirtualRegister(li->reg) && "Can only shrink virtual registers"); // Find all the values used, including PHI kills. SmallVector, 16> WorkList; // Blocks that have already been added to WorkList as live-out. SmallPtrSet LiveOut; // Visit all instructions reading li->reg. for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg); MachineInstr *UseMI = I.skipInstruction();) { if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg)) continue; SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); // Note: This intentionally picks up the wrong VNI in case of an EC redef. // See below. VNInfo *VNI = li->getVNInfoBefore(Idx); if (!VNI) { // This shouldn't happen: readsVirtualRegister returns true, but there is // no live value. It is likely caused by a target getting flags // wrong. DEBUG(dbgs() << Idx << '\t' << *UseMI << "Warning: Instr claims to read non-existent value in " << *li << '\n'); continue; } // Special case: An early-clobber tied operand reads and writes the // register one slot early. The getVNInfoBefore call above would have // picked up the value defined by UseMI. Adjust the kill slot and value. if (SlotIndex::isSameInstr(VNI->def, Idx)) { Idx = VNI->def; VNI = li->getVNInfoBefore(Idx); assert(VNI && "Early-clobber tied value not available"); } WorkList.push_back(std::make_pair(Idx, VNI)); } // Create a new live interval with only minimal live segments per def. LiveInterval NewLI(li->reg, 0); for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI)); } // Keep track of the PHIs that are in use. SmallPtrSet UsedPHIs; // Extend intervals to reach all uses in WorkList. while (!WorkList.empty()) { SlotIndex Idx = WorkList.back().first; VNInfo *VNI = WorkList.back().second; WorkList.pop_back(); const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot()); SlotIndex BlockStart = getMBBStartIdx(MBB); // Extend the live range for VNI to be live at Idx. if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) { (void)ExtVNI; assert(ExtVNI == VNI && "Unexpected existing value number"); // Is this a PHIDef we haven't seen before? if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI)) continue; // The PHI is live, make sure the predecessors are live-out. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { if (!LiveOut.insert(*PI)) continue; SlotIndex Stop = getMBBEndIdx(*PI); // A predecessor is not required to have a live-out value for a PHI. if (VNInfo *PVNI = li->getVNInfoBefore(Stop)) WorkList.push_back(std::make_pair(Stop, PVNI)); } continue; } // VNI is live-in to MBB. DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); NewLI.addRange(LiveRange(BlockStart, Idx, VNI)); // Make sure VNI is live-out from the predecessors. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { if (!LiveOut.insert(*PI)) continue; SlotIndex Stop = getMBBEndIdx(*PI); assert(li->getVNInfoBefore(Stop) == VNI && "Wrong value out of predecessor"); WorkList.push_back(std::make_pair(Stop, VNI)); } } // Handle dead values. bool CanSeparate = false; for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def); assert(LII != NewLI.end() && "Missing live range for PHI"); if (LII->end != VNI->def.getDeadSlot()) continue; if (VNI->isPHIDef()) { // This is a dead PHI. Remove it. VNI->setIsUnused(true); NewLI.removeRange(*LII); DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); CanSeparate = true; } else { // This is a dead def. Make sure the instruction knows. MachineInstr *MI = getInstructionFromIndex(VNI->def); assert(MI && "No instruction defining live value"); MI->addRegisterDead(li->reg, tri_); if (dead && MI->allDefsAreDead()) { DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI); dead->push_back(MI); } } } // Move the trimmed ranges back. li->ranges.swap(NewLI.ranges); DEBUG(dbgs() << "Shrunk: " << *li << '\n'); return CanSeparate; } //===----------------------------------------------------------------------===// // Register allocator hooks. // void LiveIntervals::addKillFlags() { for (iterator I = begin(), E = end(); I != E; ++I) { unsigned Reg = I->first; if (TargetRegisterInfo::isPhysicalRegister(Reg)) continue; if (mri_->reg_nodbg_empty(Reg)) continue; LiveInterval *LI = I->second; // Every instruction that kills Reg corresponds to a live range end point. for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE; ++RI) { // A block index indicates an MBB edge. if (RI->end.isBlock()) continue; MachineInstr *MI = getInstructionFromIndex(RI->end); if (!MI) continue; MI->addRegisterKilled(Reg, NULL); } } } /// getReMatImplicitUse - If the remat definition MI has one (for now, we only /// allow one) virtual register operand, then its uses are implicitly using /// the register. Returns the virtual register. unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li, MachineInstr *MI) const { unsigned RegOp = 0; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned Reg = MO.getReg(); if (Reg == 0 || Reg == li.reg) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isAllocatable(Reg)) continue; RegOp = MO.getReg(); break; // Found vreg operand - leave the loop. } return RegOp; } /// isValNoAvailableAt - Return true if the val# of the specified interval /// which reaches the given instruction also reaches the specified use index. bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI, SlotIndex UseIdx) const { VNInfo *UValNo = li.getVNInfoAt(UseIdx); return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI)); } /// isReMaterializable - Returns true if the definition MI of the specified /// val# of the specified interval is re-materializable. bool LiveIntervals::isReMaterializable(const LiveInterval &li, const VNInfo *ValNo, MachineInstr *MI, const SmallVectorImpl *SpillIs, bool &isLoad) { if (DisableReMat) return false; if (!tii_->isTriviallyReMaterializable(MI, aa_)) return false; // Target-specific code can mark an instruction as being rematerializable // if it has one virtual reg use, though it had better be something like // a PIC base register which is likely to be live everywhere. unsigned ImpUse = getReMatImplicitUse(li, MI); if (ImpUse) { const LiveInterval &ImpLi = getInterval(ImpUse); for (MachineRegisterInfo::use_nodbg_iterator ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end(); ri != re; ++ri) { MachineInstr *UseMI = &*ri; SlotIndex UseIdx = getInstructionIndex(UseMI); if (li.getVNInfoAt(UseIdx) != ValNo) continue; if (!isValNoAvailableAt(ImpLi, MI, UseIdx)) return false; } // If a register operand of the re-materialized instruction is going to // be spilled next, then it's not legal to re-materialize this instruction. if (SpillIs) for (unsigned i = 0, e = SpillIs->size(); i != e; ++i) if (ImpUse == (*SpillIs)[i]->reg) return false; } return true; } /// isReMaterializable - Returns true if every definition of MI of every /// val# of the specified interval is re-materializable. bool LiveIntervals::isReMaterializable(const LiveInterval &li, const SmallVectorImpl *SpillIs, bool &isLoad) { isLoad = false; for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end(); i != e; ++i) { const VNInfo *VNI = *i; if (VNI->isUnused()) continue; // Dead val#. // Is the def for the val# rematerializable? MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def); if (!ReMatDefMI) return false; bool DefIsLoad = false; if (!ReMatDefMI || !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad)) return false; isLoad |= DefIsLoad; } return true; } MachineBasicBlock* LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { // A local live range must be fully contained inside the block, meaning it is // defined and killed at instructions, not at block boundaries. It is not // live in or or out of any block. // // It is technically possible to have a PHI-defined live range identical to a // single block, but we are going to return false in that case. SlotIndex Start = LI.beginIndex(); if (Start.isBlock()) return NULL; SlotIndex Stop = LI.endIndex(); if (Stop.isBlock()) return NULL; // getMBBFromIndex doesn't need to search the MBB table when both indexes // belong to proper instructions. MachineBasicBlock *MBB1 = indexes_->getMBBFromIndex(Start); MachineBasicBlock *MBB2 = indexes_->getMBBFromIndex(Stop); return MBB1 == MBB2 ? MBB1 : NULL; } float LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) { // Limit the loop depth ridiculousness. if (loopDepth > 200) loopDepth = 200; // The loop depth is used to roughly estimate the number of times the // instruction is executed. Something like 10^d is simple, but will quickly // overflow a float. This expression behaves like 10^d for small d, but is // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of // headroom before overflow. // By the way, powf() might be unavailable here. For consistency, // We may take pow(double,double). float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth); return (isDef + isUse) * lc; } LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg, MachineInstr* startInst) { LiveInterval& Interval = getOrCreateInterval(reg); VNInfo* VN = Interval.getNextValue( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getVNInfoAllocator()); VN->setHasPHIKill(true); LiveRange LR( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getMBBEndIdx(startInst->getParent()), VN); Interval.addRange(LR); return LR; } //===----------------------------------------------------------------------===// // Register mask functions //===----------------------------------------------------------------------===// bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, BitVector &UsableRegs) { if (LI.empty()) return false; LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); // Use a smaller arrays for local live ranges. ArrayRef Slots; ArrayRef Bits; if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { Slots = getRegMaskSlotsInBlock(MBB->getNumber()); Bits = getRegMaskBitsInBlock(MBB->getNumber()); } else { Slots = getRegMaskSlots(); Bits = getRegMaskBits(); } // We are going to enumerate all the register mask slots contained in LI. // Start with a binary search of RegMaskSlots to find a starting point. ArrayRef::iterator SlotI = std::lower_bound(Slots.begin(), Slots.end(), LiveI->start); ArrayRef::iterator SlotE = Slots.end(); // No slots in range, LI begins after the last call. if (SlotI == SlotE) return false; bool Found = false; for (;;) { assert(*SlotI >= LiveI->start); // Loop over all slots overlapping this segment. while (*SlotI < LiveI->end) { // *SlotI overlaps LI. Collect mask bits. if (!Found) { // This is the first overlap. Initialize UsableRegs to all ones. UsableRegs.clear(); UsableRegs.resize(tri_->getNumRegs(), true); Found = true; } // Remove usable registers clobbered by this mask. UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); if (++SlotI == SlotE) return Found; } // *SlotI is beyond the current LI segment. LiveI = LI.advanceTo(LiveI, *SlotI); if (LiveI == LiveE) return Found; // Advance SlotI until it overlaps. while (*SlotI < LiveI->start) if (++SlotI == SlotE) return Found; } } //===----------------------------------------------------------------------===// // IntervalUpdate class. //===----------------------------------------------------------------------===// // HMEditor is a toolkit used by handleMove to trim or extend live intervals. class LiveIntervals::HMEditor { private: LiveIntervals& LIS; const MachineRegisterInfo& MRI; const TargetRegisterInfo& TRI; SlotIndex NewIdx; typedef std::pair IntRangePair; typedef DenseSet RangeSet; struct RegRanges { LiveRange* Use; LiveRange* EC; LiveRange* Dead; LiveRange* Def; RegRanges() : Use(0), EC(0), Dead(0), Def(0) {} }; typedef DenseMap BundleRanges; public: HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, const TargetRegisterInfo& TRI, SlotIndex NewIdx) : LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {} // Update intervals for all operands of MI from OldIdx to NewIdx. // This assumes that MI used to be at OldIdx, and now resides at // NewIdx. void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) { assert(NewIdx != OldIdx && "No-op move? That's a bit strange."); // Collect the operands. RangeSet Entering, Internal, Exiting; bool hasRegMaskOp = false; collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx); moveAllEnteringFrom(OldIdx, Entering); moveAllInternalFrom(OldIdx, Internal); moveAllExitingFrom(OldIdx, Exiting); if (hasRegMaskOp) updateRegMaskSlots(OldIdx); #ifndef NDEBUG LIValidator validator; std::for_each(Entering.begin(), Entering.end(), validator); std::for_each(Internal.begin(), Internal.end(), validator); std::for_each(Exiting.begin(), Exiting.end(), validator); assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness."); #endif } // Update intervals for all operands of MI to refer to BundleStart's // SlotIndex. void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) { if (MI == BundleStart) return; // Bundling instr with itself - nothing to do. SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI); assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI && "SlotIndex <-> Instruction mapping broken for MI"); // Collect all ranges already in the bundle. MachineBasicBlock::instr_iterator BII(BundleStart); RangeSet Entering, Internal, Exiting; bool hasRegMaskOp = false; collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx); assert(!hasRegMaskOp && "Can't have RegMask operand in bundle."); for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) { if (&*BII == MI) continue; collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx); assert(!hasRegMaskOp && "Can't have RegMask operand in bundle."); } BundleRanges BR = createBundleRanges(Entering, Internal, Exiting); collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx); assert(!hasRegMaskOp && "Can't have RegMask operand in bundle."); DEBUG(dbgs() << "Entering: " << Entering.size() << "\n"); DEBUG(dbgs() << "Internal: " << Internal.size() << "\n"); DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n"); moveAllEnteringFromInto(OldIdx, Entering, BR); moveAllInternalFromInto(OldIdx, Internal, BR); moveAllExitingFromInto(OldIdx, Exiting, BR); #ifndef NDEBUG LIValidator validator; std::for_each(Entering.begin(), Entering.end(), validator); std::for_each(Internal.begin(), Internal.end(), validator); std::for_each(Exiting.begin(), Exiting.end(), validator); assert(validator.rangesOk() && "moveAllOperandsInto broke liveness."); #endif } private: #ifndef NDEBUG class LIValidator { private: DenseSet Checked, Bogus; public: void operator()(const IntRangePair& P) { const LiveInterval* LI = P.first; if (Checked.count(LI)) return; Checked.insert(LI); if (LI->empty()) return; SlotIndex LastEnd = LI->begin()->start; for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end(); LRI != LRE; ++LRI) { const LiveRange& LR = *LRI; if (LastEnd > LR.start || LR.start >= LR.end) Bogus.insert(LI); LastEnd = LR.end; } } bool rangesOk() const { return Bogus.empty(); } }; #endif // Collect IntRangePairs for all operands of MI that may need fixing. // Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes' // maps). void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal, RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) { hasRegMaskOp = false; for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { const MachineOperand& MO = *MOI; if (MO.isRegMask()) { hasRegMaskOp = true; continue; } if (!MO.isReg() || MO.getReg() == 0) continue; unsigned Reg = MO.getReg(); // TODO: Currently we're skipping uses that are reserved or have no // interval, but we're not updating their kills. This should be // fixed. if (!LIS.hasInterval(Reg) || (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg))) continue; LiveInterval* LI = &LIS.getInterval(Reg); if (MO.readsReg()) { LiveRange* LR = LI->getLiveRangeContaining(OldIdx); if (LR != 0) Entering.insert(std::make_pair(LI, LR)); } if (MO.isDef()) { if (MO.isEarlyClobber()) { LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot(true)); assert(LR != 0 && "No EC range?"); if (LR->end > OldIdx.getDeadSlot()) Exiting.insert(std::make_pair(LI, LR)); else Internal.insert(std::make_pair(LI, LR)); } else if (MO.isDead()) { LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot()); assert(LR != 0 && "No dead-def range?"); Internal.insert(std::make_pair(LI, LR)); } else { LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getDeadSlot()); assert(LR && LR->end > OldIdx.getDeadSlot() && "Non-dead-def should have live range exiting."); Exiting.insert(std::make_pair(LI, LR)); } } } } // Collect IntRangePairs for all operands of MI that may need fixing. void collectRangesInBundle(MachineInstr* MI, RangeSet& Entering, RangeSet& Exiting, SlotIndex MIStartIdx, SlotIndex MIEndIdx) { for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { const MachineOperand& MO = *MOI; assert(!MO.isRegMask() && "Can't have RegMasks in bundles."); if (!MO.isReg() || MO.getReg() == 0) continue; unsigned Reg = MO.getReg(); // TODO: Currently we're skipping uses that are reserved or have no // interval, but we're not updating their kills. This should be // fixed. if (!LIS.hasInterval(Reg) || (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg))) continue; LiveInterval* LI = &LIS.getInterval(Reg); if (MO.readsReg()) { LiveRange* LR = LI->getLiveRangeContaining(MIStartIdx); if (LR != 0) Entering.insert(std::make_pair(LI, LR)); } if (MO.isDef()) { assert(!MO.isEarlyClobber() && "Early clobbers not allowed in bundles."); assert(!MO.isDead() && "Dead-defs not allowed in bundles."); LiveRange* LR = LI->getLiveRangeContaining(MIEndIdx.getDeadSlot()); assert(LR != 0 && "Internal ranges not allowed in bundles."); Exiting.insert(std::make_pair(LI, LR)); } } } BundleRanges createBundleRanges(RangeSet& Entering, RangeSet& Internal, RangeSet& Exiting) { BundleRanges BR; for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end(); EI != EE; ++EI) { LiveInterval* LI = EI->first; LiveRange* LR = EI->second; BR[LI->reg].Use = LR; } for (RangeSet::iterator II = Internal.begin(), IE = Internal.end(); II != IE; ++II) { LiveInterval* LI = II->first; LiveRange* LR = II->second; if (LR->end.isDead()) { BR[LI->reg].Dead = LR; } else { BR[LI->reg].EC = LR; } } for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end(); EI != EE; ++EI) { LiveInterval* LI = EI->first; LiveRange* LR = EI->second; BR[LI->reg].Def = LR; } return BR; } void moveKillFlags(unsigned reg, SlotIndex OldIdx, SlotIndex newKillIdx) { MachineInstr* OldKillMI = LIS.getInstructionFromIndex(OldIdx); if (!OldKillMI->killsRegister(reg)) return; // Bail out if we don't have kill flags on the old register. MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx); assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill."); assert(!NewKillMI->killsRegister(reg) && "New kill instr is already a kill."); OldKillMI->clearRegisterKills(reg, &TRI); NewKillMI->addRegisterKilled(reg, &TRI); } void updateRegMaskSlots(SlotIndex OldIdx) { SmallVectorImpl::iterator RI = std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(), OldIdx); assert(*RI == OldIdx && "No RegMask at OldIdx."); *RI = NewIdx; assert(*prior(RI) < *RI && *RI < *next(RI) && "RegSlots out of order. Did you move one call across another?"); } // Return the last use of reg between NewIdx and OldIdx. SlotIndex findLastUseBefore(unsigned Reg, SlotIndex OldIdx) { SlotIndex LastUse = NewIdx; for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg), UE = MRI.use_nodbg_end(); UI != UE; UI.skipInstruction()) { const MachineInstr* MI = &*UI; SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); if (InstSlot > LastUse && InstSlot < OldIdx) LastUse = InstSlot; } return LastUse; } void moveEnteringUpFrom(SlotIndex OldIdx, IntRangePair& P) { LiveInterval* LI = P.first; LiveRange* LR = P.second; bool LiveThrough = LR->end > OldIdx.getRegSlot(); if (LiveThrough) return; SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx); if (LastUse != NewIdx) moveKillFlags(LI->reg, NewIdx, LastUse); LR->end = LastUse.getRegSlot(); } void moveEnteringDownFrom(SlotIndex OldIdx, IntRangePair& P) { LiveInterval* LI = P.first; LiveRange* LR = P.second; if (NewIdx > LR->end) { moveKillFlags(LI->reg, LR->end, NewIdx); LR->end = NewIdx.getRegSlot(); } } void moveAllEnteringFrom(SlotIndex OldIdx, RangeSet& Entering) { bool GoingUp = NewIdx < OldIdx; if (GoingUp) { for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end(); EI != EE; ++EI) moveEnteringUpFrom(OldIdx, *EI); } else { for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end(); EI != EE; ++EI) moveEnteringDownFrom(OldIdx, *EI); } } void moveInternalFrom(SlotIndex OldIdx, IntRangePair& P) { LiveInterval* LI = P.first; LiveRange* LR = P.second; assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() && LR->end <= OldIdx.getDeadSlot() && "Range should be internal to OldIdx."); LiveRange Tmp(*LR); Tmp.start = NewIdx.getRegSlot(LR->start.isEarlyClobber()); Tmp.valno->def = Tmp.start; Tmp.end = LR->end.isDead() ? NewIdx.getDeadSlot() : NewIdx.getRegSlot(); LI->removeRange(*LR); LI->addRange(Tmp); } void moveAllInternalFrom(SlotIndex OldIdx, RangeSet& Internal) { for (RangeSet::iterator II = Internal.begin(), IE = Internal.end(); II != IE; ++II) moveInternalFrom(OldIdx, *II); } void moveExitingFrom(SlotIndex OldIdx, IntRangePair& P) { LiveRange* LR = P.second; assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() && "Range should start in OldIdx."); assert(LR->end > OldIdx.getDeadSlot() && "Range should exit OldIdx."); SlotIndex NewStart = NewIdx.getRegSlot(LR->start.isEarlyClobber()); LR->start = NewStart; LR->valno->def = NewStart; } void moveAllExitingFrom(SlotIndex OldIdx, RangeSet& Exiting) { for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end(); EI != EE; ++EI) moveExitingFrom(OldIdx, *EI); } void moveEnteringUpFromInto(SlotIndex OldIdx, IntRangePair& P, BundleRanges& BR) { LiveInterval* LI = P.first; LiveRange* LR = P.second; bool LiveThrough = LR->end > OldIdx.getRegSlot(); if (LiveThrough) { assert((LR->start < NewIdx || BR[LI->reg].Def == LR) && "Def in bundle should be def range."); assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) && "If bundle has use for this reg it should be LR."); BR[LI->reg].Use = LR; return; } SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx); moveKillFlags(LI->reg, OldIdx, LastUse); if (LR->start < NewIdx) { // Becoming a new entering range. assert(BR[LI->reg].Dead == 0 && BR[LI->reg].Def == 0 && "Bundle shouldn't be re-defining reg mid-range."); assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) && "Bundle shouldn't have different use range for same reg."); LR->end = LastUse.getRegSlot(); BR[LI->reg].Use = LR; } else { // Becoming a new Dead-def. assert(LR->start == NewIdx.getRegSlot(LR->start.isEarlyClobber()) && "Live range starting at unexpected slot."); assert(BR[LI->reg].Def == LR && "Reg should have def range."); assert(BR[LI->reg].Dead == 0 && "Can't have def and dead def of same reg in a bundle."); LR->end = LastUse.getDeadSlot(); BR[LI->reg].Dead = BR[LI->reg].Def; BR[LI->reg].Def = 0; } } void moveEnteringDownFromInto(SlotIndex OldIdx, IntRangePair& P, BundleRanges& BR) { LiveInterval* LI = P.first; LiveRange* LR = P.second; if (NewIdx > LR->end) { // Range extended to bundle. Add to bundle uses. // Note: Currently adds kill flags to bundle start. assert(BR[LI->reg].Use == 0 && "Bundle already has use range for reg."); moveKillFlags(LI->reg, LR->end, NewIdx); LR->end = NewIdx.getRegSlot(); BR[LI->reg].Use = LR; } else { assert(BR[LI->reg].Use != 0 && "Bundle should already have a use range for reg."); } } void moveAllEnteringFromInto(SlotIndex OldIdx, RangeSet& Entering, BundleRanges& BR) { bool GoingUp = NewIdx < OldIdx; if (GoingUp) { for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end(); EI != EE; ++EI) moveEnteringUpFromInto(OldIdx, *EI, BR); } else { for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end(); EI != EE; ++EI) moveEnteringDownFromInto(OldIdx, *EI, BR); } } void moveInternalFromInto(SlotIndex OldIdx, IntRangePair& P, BundleRanges& BR) { // TODO: Sane rules for moving ranges into bundles. } void moveAllInternalFromInto(SlotIndex OldIdx, RangeSet& Internal, BundleRanges& BR) { for (RangeSet::iterator II = Internal.begin(), IE = Internal.end(); II != IE; ++II) moveInternalFromInto(OldIdx, *II, BR); } void moveExitingFromInto(SlotIndex OldIdx, IntRangePair& P, BundleRanges& BR) { LiveInterval* LI = P.first; LiveRange* LR = P.second; assert(LR->start.isRegister() && "Don't know how to merge exiting ECs into bundles yet."); if (LR->end > NewIdx.getDeadSlot()) { // This range is becoming an exiting range on the bundle. // If there was an old dead-def of this reg, delete it. if (BR[LI->reg].Dead != 0) { LI->removeRange(*BR[LI->reg].Dead); BR[LI->reg].Dead = 0; } assert(BR[LI->reg].Def == 0 && "Can't have two defs for the same variable exiting a bundle."); LR->start = NewIdx.getRegSlot(); LR->valno->def = LR->start; BR[LI->reg].Def = LR; } else { // This range is becoming internal to the bundle. assert(LR->end == NewIdx.getRegSlot() && "Can't bundle def whose kill is before the bundle"); if (BR[LI->reg].Dead || BR[LI->reg].Def) { // Already have a def for this. Just delete range. LI->removeRange(*LR); } else { // Make range dead, record. LR->end = NewIdx.getDeadSlot(); BR[LI->reg].Dead = LR; assert(BR[LI->reg].Use == LR && "Range becoming dead should currently be use."); } // In both cases the range is no longer a use on the bundle. BR[LI->reg].Use = 0; } } void moveAllExitingFromInto(SlotIndex OldIdx, RangeSet& Exiting, BundleRanges& BR) { for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end(); EI != EE; ++EI) moveExitingFromInto(OldIdx, *EI, BR); } }; void LiveIntervals::handleMove(MachineInstr* MI) { SlotIndex OldIndex = indexes_->getInstructionIndex(MI); indexes_->removeMachineInstrFromMaps(MI); SlotIndex NewIndex = MI->isInsideBundle() ? indexes_->getInstructionIndex(MI) : indexes_->insertMachineInstrInMaps(MI); assert(getMBBStartIdx(MI->getParent()) <= OldIndex && OldIndex < getMBBEndIdx(MI->getParent()) && "Cannot handle moves across basic block boundaries."); assert(!MI->isBundled() && "Can't handle bundled instructions yet."); HMEditor HME(*this, *mri_, *tri_, NewIndex); HME.moveAllRangesFrom(MI, OldIndex); } void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart) { SlotIndex NewIndex = indexes_->getInstructionIndex(BundleStart); HMEditor HME(*this, *mri_, *tri_, NewIndex); HME.moveAllRangesInto(MI, BundleStart); }