//===- llvm/Pass.h - Base class for XForm Passes -----------------*- C++ -*--=// // // This file defines a base class that indicates that a specified class is a // transformation pass implementation. // // Pass's are designed this way so that it is possible to run passes in a cache // and organizationally optimal order without having to specify it at the front // end. This allows arbitrary passes to be strung together and have them // executed as effeciently as possible. // // Passes should extend one of the classes below, depending on the guarantees // that it can make about what will be modified as it is run. For example, most // global optimizations should derive from FunctionPass, because they do not add // or delete functions, they operate on the internals of the function. // // Note that this file #includes PassSupport.h and PassAnalysisSupport.h (at the // bottom), so the APIs exposed by these files are also automatically available // to all users of this file. // //===----------------------------------------------------------------------===// #ifndef LLVM_PASS_H #define LLVM_PASS_H #include #include #include class Value; class BasicBlock; class Function; class Module; class AnalysisUsage; class PassInfo; template class PassManagerT; struct AnalysisResolver; // AnalysisID - Use the PassInfo to identify a pass... typedef const PassInfo* AnalysisID; //===----------------------------------------------------------------------===// // Pass interface - Implemented by all 'passes'. Subclass this if you are an // interprocedural optimization or you do not fit into any of the more // constrained passes described below. // class Pass { friend class AnalysisResolver; AnalysisResolver *Resolver; // AnalysisResolver this pass is owned by... const PassInfo *PassInfoCache; void operator=(const Pass&); // DO NOT IMPLEMENT Pass(const Pass &); // DO NOT IMPLEMENT public: Pass() : Resolver(0), PassInfoCache(0) {} virtual ~Pass() {} // Destructor is virtual so we can be subclassed // getPassName - Return a nice clean name for a pass. This usually // implemented in terms of the name that is registered by one of the // Registration templates, but can be overloaded directly, and if nothing else // is available, C++ RTTI will be consulted to get a SOMEWHAT intelligable // name for the pass. // virtual const char *getPassName() const; // getPassInfo - Return the PassInfo data structure that corresponds to this // pass... If the pass has not been registered, this will return null. // const PassInfo *getPassInfo() const; // run - Run this pass, returning true if a modification was made to the // module argument. This should be implemented by all concrete subclasses. // virtual bool run(Module &M) = 0; // print - Print out the internal state of the pass. This is called by // Analyze to print out the contents of an analysis. Otherwise it is not // neccesary to implement this method. Beware that the module pointer MAY be // null. This automatically forwards to a virtual function that does not // provide the Module* in case the analysis doesn't need it it can just be // ignored. // virtual void print(std::ostream &O, const Module *M) const { print(O); } virtual void print(std::ostream &O) const; void dump() const; // dump - call print(std::cerr, 0); // getAnalysisUsage - This function should be overriden by passes that need // analysis information to do their job. If a pass specifies that it uses a // particular analysis result to this function, it can then use the // getAnalysis() function, below. // virtual void getAnalysisUsage(AnalysisUsage &Info) const { // By default, no analysis results are used, all are invalidated. } // releaseMemory() - This member can be implemented by a pass if it wants to // be able to release its memory when it is no longer needed. The default // behavior of passes is to hold onto memory for the entire duration of their // lifetime (which is the entire compile time). For pipelined passes, this // is not a big deal because that memory gets recycled every time the pass is // invoked on another program unit. For IP passes, it is more important to // free memory when it is unused. // // Optionally implement this function to release pass memory when it is no // longer used. // virtual void releaseMemory() {} // dumpPassStructure - Implement the -debug-passes=PassStructure option virtual void dumpPassStructure(unsigned Offset = 0); protected: // getAnalysis() - This function is used by subclasses to get to // the analysis information that they claim to use by overriding the // getAnalysisUsage function. // template AnalysisType &getAnalysis(AnalysisID AID = AnalysisType::ID) { assert(Resolver && "Pass not resident in a PassManager object!"); return *(AnalysisType*)Resolver->getAnalysis(AID); } // getAnalysisToUpdate() - This function is used by subclasses // to get to the analysis information that might be around that needs to be // updated. This is different than getAnalysis in that it can fail (ie the // analysis results haven't been computed), so should only be used if you // provide the capability to update an analysis that exists. // template AnalysisType *getAnalysisToUpdate(AnalysisID AID = AnalysisType::ID) { assert(Resolver && "Pass not resident in a PassManager object!"); return (AnalysisType*)Resolver->getAnalysisToUpdate(AID); } private: friend class PassManagerT; friend class PassManagerT; friend class PassManagerT; virtual void addToPassManager(PassManagerT *PM, AnalysisUsage &AU); }; inline std::ostream &operator<<(std::ostream &OS, const Pass &P) { P.print(OS, 0); return OS; } //===----------------------------------------------------------------------===// // FunctionPass class - This class is used to implement most global // optimizations. Optimizations should subclass this class if they meet the // following constraints: // // 1. Optimizations are organized globally, ie a function at a time // 2. Optimizing a function does not cause the addition or removal of any // functions in the module // struct FunctionPass : public Pass { // doInitialization - Virtual method overridden by subclasses to do // any neccesary per-module initialization. // virtual bool doInitialization(Module &M) { return false; } // runOnFunction - Virtual method overriden by subclasses to do the // per-function processing of the pass. // virtual bool runOnFunction(Function &F) = 0; // doFinalization - Virtual method overriden by subclasses to do any post // processing needed after all passes have run. // virtual bool doFinalization(Module &M) { return false; } // run - On a module, we run this pass by initializing, ronOnFunction'ing once // for every function in the module, then by finalizing. // virtual bool run(Module &M); // run - On a function, we simply initialize, run the function, then finalize. // bool run(Function &F); private: friend class PassManagerT; friend class PassManagerT; friend class PassManagerT; virtual void addToPassManager(PassManagerT *PM, AnalysisUsage &AU); virtual void addToPassManager(PassManagerT *PM, AnalysisUsage &AU); }; //===----------------------------------------------------------------------===// // BasicBlockPass class - This class is used to implement most local // optimizations. Optimizations should subclass this class if they // meet the following constraints: // 1. Optimizations are local, operating on either a basic block or // instruction at a time. // 2. Optimizations do not modify the CFG of the contained function, or any // other basic block in the function. // 3. Optimizations conform to all of the contstraints of FunctionPass's. // struct BasicBlockPass : public FunctionPass { // runOnBasicBlock - Virtual method overriden by subclasses to do the // per-basicblock processing of the pass. // virtual bool runOnBasicBlock(BasicBlock &BB) = 0; // To run this pass on a function, we simply call runOnBasicBlock once for // each function. // virtual bool runOnFunction(Function &F); // To run directly on the basic block, we initialize, runOnBasicBlock, then // finalize. // bool run(BasicBlock &BB); private: friend class PassManagerT; friend class PassManagerT; virtual void addToPassManager(PassManagerT *PM, AnalysisUsage &AU); virtual void addToPassManager(PassManagerT *PM,AnalysisUsage &AU); }; // Include support files that contain important APIs commonly used by Passes, // but that we want to seperate out to make it easier to read the header files. // #include "llvm/PassSupport.h" #include "llvm/PassAnalysisSupport.h" #endif